Determination of the hardening depth by using inversely determined micro-magnetic characteristics

2019 ◽  
Vol 61 (5) ◽  
pp. 495-500
Author(s):  
Tobias Bick ◽  
Thorsten Kandelhardt ◽  
Kai Treutler ◽  
Volker Wesling
2019 ◽  
Vol 9 (10) ◽  
pp. 2001
Author(s):  
Vladimir Kochemirovsky ◽  
Svetlanav Kochemirovskaia ◽  
Michael Malygin ◽  
Alexey Kuzmin ◽  
Maxim Novomlinsky ◽  
...  

The development of an algorithm to automate the process of measuring the magnetic properties of macroscopic objects in motion is an important problem in various industries, especially in ferrous metallurgy and at factories where ferrous scrap is a strategic raw material. The parameter that requires work control is the hidden mass fraction of a non-magnetic substance that is present in the ferromagnetic raw material. The solution to this problem has no prototypes. In our work, a simple measuring device and a mathematical algorithm for calculating the mass fraction of the non-magnetic fraction in a strongly magnetic matrix were developed. The device is an inductance coil, in which the angle of the electromagnet losses is related to the mass of the magnetic material moving the coil. The magnitude of the instantaneous values of the lost angle integral was compared with the result of weighing the object on scales. This allowed us to calculate the proportion of the magnetic and non-magnetic fractions. The use of this prototype is herein illustrated. The experimental results of the determination of the magnetic-fractional composition depending on the mass of scrap metal and its bulk and the magnetic characteristics are presented.


Author(s):  
A.V. Egorov ◽  
V.V. Polyakov ◽  
A.A. Lependin ◽  
D.D. Ruder

Non-destructive eddy current diagnostics of the structure, composition, physical and mechanical properties of ferromagnetic materials, as well as eddy current monitoring of the operational parameters of products manufactured from them, requires knowledge of the magnetic characteristics of these materials. In eddy current measurements, the results obtained are influenced by a significant number of factors — magnetic and electrical properties of materials, geometric characteristics of products, measurement conditions, design features of an eddy current sensor, etc. Also, the magnetic properties themselves have high structural sensitivity. Thus, identification of the diagnosed parameters puts great importance on the tasks to separate the influencing factors and isolate the contribution of the magnetic properties. This paper describes the measuring and computing system that allows automatic determination of the magnetic permeability of soft magnetic ferromagnetic materials at various values of the strength of the external magnetizing field. The system has been tested using soft magnetic ferrites samples. An experimental dependence of the magnetic permeability on the magnitude of the magnetic field for the initial section of the main magnetization curve is presented. The obtained initial magnetic permeability is compared with the data of independent indirect measurements. The proposed system provides an increase in the reliability and accuracy of the results of the experimental determination of magnetic characteristics and can be used for non-destructive diagnostics of products made of soft magnetic ferromagnetic materials.


2020 ◽  
Vol 166 ◽  
pp. 06002
Author(s):  
Serhiy Sakhno ◽  
Lyudmyla Yanova ◽  
Olena Pischikova ◽  
Serhii Chukharev

Sustainable development of construction materials is directly related to research on the processes of hydration of binders. Builders need better types of cement, with lower cost and energy consumption in production. The development of spin chemistry methods allows us to consider the processes of hydration and structure formation of binders from the spin state of the elements involved in chemical reactions. Magnetic interactions have a significant effect on the spin dynamics and the control of the spin multiplicity of radical pairs. The practical implementation of magnetic effects on a binder can be carried out in various ways. However, a long-term impact can be achieved only by introducing ferromagnetic substances into the binders. In the paper presented the results of a study of the influence of the characteristics of finely dispersed powdered ferromagnetic additives on the strength characteristics of cement. Ferromagnetic additives regulate the behavior of the reactants during rotation during the hydration of the binders due to magnetic interactions and control the reactivity of the chemical reaction. A comparative analysis revealed that it is most expedient to use as powdery ferromagnetic additives are the waste from mining and processing enterprises of the Krivorozhsky field. The work investigated the magnetic and dispersed characteristics of 12 different dust. The experiments showed that the origin of dust and the method of their capture are determined their magnetic characteristics. Preparation of samples with the dust and determination of the strength characteristics of cement were carried out by standard methods. The results obtained made it possible to reveal the laws of the effect of the dispersed and magnetic properties of various dust on the degree of activation of binders.


2017 ◽  
Vol 513 ◽  
pp. 77-81 ◽  
Author(s):  
A. Ugulava ◽  
Z. Toklikishvili ◽  
S. Chkhaidze ◽  
Sh. Kekutia

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Suze Nei P. Guimaraes ◽  
Valiya M. Hamza

In the present work we report results of a regional scale investigation of the thermal and magnetic characteristics of the crust in the southern sector of the geologic provinces of Tocantins and São Francisco, Brazil. Updated compilations of aeromagnetic and geothermal data sets were employed for this purpose. Use of such techniques as vertical derivative, analytic signal, and Euler deconvolution in analysis of aeromagnetic data has allowed precise locations of the sources of magnetic anomalies and determination of their respective depths. The anomalies in the Tocantins province are considered as arising from variations in the magnetic susceptibilities and remnant magnetizations of alkaline magmatic intrusions of the Tertiary period. The lateral dimensions of the bodies are less than 10 km, and these are found to occur at shallow depths of less than 20 km. On the other hand, the anomalies in the cratonic areas are related to contrasts in magnetic properties of bodies situated at depths greater than 20 km and have spatial dimensions of more than 50 km. Analysis of geothermal data reveals that the cratonic area is characterized by geothermal gradients and heat flow values lower when compared with those of the Tocantins province.


Sign in / Sign up

Export Citation Format

Share Document