scholarly journals Study of the influence of properties of dusty ferromagnetic additives on the increase of cement activity

2020 ◽  
Vol 166 ◽  
pp. 06002
Author(s):  
Serhiy Sakhno ◽  
Lyudmyla Yanova ◽  
Olena Pischikova ◽  
Serhii Chukharev

Sustainable development of construction materials is directly related to research on the processes of hydration of binders. Builders need better types of cement, with lower cost and energy consumption in production. The development of spin chemistry methods allows us to consider the processes of hydration and structure formation of binders from the spin state of the elements involved in chemical reactions. Magnetic interactions have a significant effect on the spin dynamics and the control of the spin multiplicity of radical pairs. The practical implementation of magnetic effects on a binder can be carried out in various ways. However, a long-term impact can be achieved only by introducing ferromagnetic substances into the binders. In the paper presented the results of a study of the influence of the characteristics of finely dispersed powdered ferromagnetic additives on the strength characteristics of cement. Ferromagnetic additives regulate the behavior of the reactants during rotation during the hydration of the binders due to magnetic interactions and control the reactivity of the chemical reaction. A comparative analysis revealed that it is most expedient to use as powdery ferromagnetic additives are the waste from mining and processing enterprises of the Krivorozhsky field. The work investigated the magnetic and dispersed characteristics of 12 different dust. The experiments showed that the origin of dust and the method of their capture are determined their magnetic characteristics. Preparation of samples with the dust and determination of the strength characteristics of cement were carried out by standard methods. The results obtained made it possible to reveal the laws of the effect of the dispersed and magnetic properties of various dust on the degree of activation of binders.

2021 ◽  
Vol 2061 (1) ◽  
pp. 012089
Author(s):  
S I Kondratyev ◽  
A I Epikhin

Abstract The paper studies the prospects of using telematics data to support effective solutions for tracking and monitoring the condition of the power supply system (PSS) components of unmanned vessels (UV) through the determination of positioning and, accordingly, operating time of PSS components. The paper attempts to describe one of the modules of the proposed integrated telematics system for UV monitoring, diagnostics and control. For practical implementation of telematics for unmanned merchant vessels, an algorithm has been developed to diagnose the technical condition of PSS components based on the operating time and condition of the units and components of the UV PSS. The results obtained by the algorithm show the technical condition of the observed technical equipment, time of its operation, and justify the need for repair or its complete replacement. The block diagram presents the algorithm that employs a minimal set of data to determine the use of technical equipment for further planning of its preventive maintenance. The paper provides the graphical interpretation of data on the time of PSS components operation and an example of displaying the interface of the remote operator of the UV. It is proposed to use telematics for tracking and monitoring the UV PSS operation in order to improve the quality of equipment maintenance, provide rational use of resources, extend its service life, and plan the repair time. In the future, it is proposed to create an integrated intelligent system based on telematics data, which allows the UV control and monitoring of the technical condition of its equipment.


Author(s):  
Amankwah K.S. ◽  
A.D. Weberg ◽  
R.C. Kaufmann

Previous research has revealed that passive (involuntary inhalation) tobacco smoking during gestation can have adverse effects upon the developing fetus. These prior investigations did not concentrate on changes in fetal morphology. This study was undertaken to delineate fetal neural abnormalities at the ultrastructural level in mice pups exposed in utero to passive maternal smoking.Pregnant study animals, housed in a special chamber, were subjected to cigarette smoke daily from conception until delivery. Blood tests for determination of carbon monoxide levels were run at 15-18 days gestation. Sciatic nerve tissue from experimental and control animals were obtained following spontaneous delivery and fixed in 2.5% gluteraldehyde in 0.1M cacodylate buffer pH 7.3. The samples were post-fixed in osmium ferrocyanide (1:1 mixture of 1.5% aqueous OSO4 and 2.5% K4 Fe(CN)6). Following dehydration, the tissues were infiltrated with and embedded in Spurr. Sections were stained with uranyl acetate and lead citrate.


2019 ◽  
Vol 61 (5) ◽  
pp. 495-500
Author(s):  
Tobias Bick ◽  
Thorsten Kandelhardt ◽  
Kai Treutler ◽  
Volker Wesling

Author(s):  
Prong Kongsubto ◽  
Sirarat Kongwudthiti

Abstract Organic solderability preservatives (OSPs) pad is one of the pad finishing technologies where Cu pad is coated with a thin film of an organic material to protect Cu from oxidation during storage and many processes in IC manufacturing. Thickness of OSP film is a critical factor that we have to consider and control in order to achieve desirable joint strength. Until now, no non-destructive technique has been proposed to measure OSP thickness on substrate. This paper reports about the development of EDS technique for estimating OSP thickness, starting with determination of the EDS parameter followed by establishing the correlation between C/Cu ratio and OSP thickness and, finally, evaluating the accuracy of the EDS technique for OSP thickness measurement. EDS quantitative analysis was proved that it can be utilized for OSP thickness estimation.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 594
Author(s):  
Pavel Brdlík ◽  
Martin Borůvka ◽  
Luboš Běhálek ◽  
Petr Lenfeld

The influence of additives such as natural-based plasticiser acetyl tributyl citrate (ATBC), CaCO3 and lignin-coated cellulose nanocrystals (L-CNC) on the biodegradation of polylactic acid (PLA) biocomposites was studied by monitoring microbial metabolic activity through respirometry. Ternary biocomposites and control samples were processed by a twin-screw extruder equipped with a flat film die. Commonly available compost was used for the determination of the ultimate aerobic biodegradability of PLA biocomposites under controlled composting conditions (ISO 14855-1). In addition, the hydro-degradability of prepared films in a freshwater biotope was analysed. To determine the efficiency of hydro-degradation, qualitative analyses (SEM, DSC, TGA and FTIR) were conducted. The results showed obvious differences in the degradation rate of PLA biocomposites. The application of ATBC at 10 wt.% loading increased the biodegradation rate of PLA. The addition of 10 wt.% of CaCO3 into the plasticised PLA matrix ensured an even higher degradation rate at aerobic thermophilic composting conditions. In such samples (PLA/ATBC/CaCO3), 94% biodegradation in 60 days was observed. In contrast, neat PLA exposed to the same conditions achieved only 16% biodegradation. Slightly inhibited microorganism activity was also observed for ternary PLA biocomposites containing L-CNC (1 wt.% loading). The results of qualitative analyses of degradation in a freshwater biotope confirmed increased biodegradation potential of ternary biocomposites containing both CaCO3 and ATBC. Significant differences in the chemical and structural compositions of PLA biocomposites were found in the evaluated period of three months.


2021 ◽  
Vol 11 (11) ◽  
pp. 4754
Author(s):  
Assia Aboubakar Mahamat ◽  
Moussa Mahamat Boukar ◽  
Nurudeen Mahmud Ibrahim ◽  
Tido Tiwa Stanislas ◽  
Numfor Linda Bih ◽  
...  

Earth-based materials have shown promise in the development of ecofriendly and sustainable construction materials. However, their unconventional usage in the construction field makes the estimation of their properties difficult and inaccurate. Often, the determination of their properties is conducted based on a conventional materials procedure. Hence, there is inaccuracy in understanding the properties of the unconventional materials. To obtain more accurate properties, a support vector machine (SVM), artificial neural network (ANN) and linear regression (LR) were used to predict the compressive strength of the alkali-activated termite soil. In this study, factors such as activator concentration, Si/Al, initial curing temperature, water absorption, weight and curing regime were used as input parameters due to their significant effect in the compressive strength. The experimental results depict that SVM outperforms ANN and LR in terms of R2 score and root mean square error (RMSE).


Author(s):  
Z. C. Ong ◽  
C. C. Lee

A novel modal analysis technique called impact-synchronous modal analysis (ISMA) was introduced in previous research. With the utilization of impact-synchronous time averaging (ISTA), this modal analysis can be performed in presence of ambient forces whereas the conventional analysis method requires machines to be totally shut down. However, lack of information of phase angles with respect to impact in ISMA has caused it to be labor-intensive and time-consuming. An automated impact device (AID) is introduced in this study in the effort to replace the manually operated impact hammer and prepare it to be used in the current practice of ISMA on the purpose of enhancing its effectiveness and practicability. Impact profile and isolation effect are noted to be the contributing parameters in this study. This paper devoted on calibrating and controlling of the AID which gives the desired impact profiles as compared to the manual impact hammer. The AID is found effective in the determination of dynamic characteristics when the device is isolated from the boundary condition of the test structure.


2001 ◽  
Vol 671 ◽  
Author(s):  
Michael Gostein ◽  
Paul Lefevre ◽  
Alex A. Maznev ◽  
Michael Joffe

ABSTRACTWe discuss applications of optoacoustic film thickness metrology for characterization of copper chemical-mechanical polishing (CMP). We highlight areas where the use of optoacoustics for CMP characterization provides data complementary to that obtained by other techniques because of its ability to directly measure film thickness with high spatial resolution in a rapid, non-destructive manner. Examples considered include determination of planarization length, measurement of film thickness at intermediate stages of polish, and measurement of arrays of metal lines.


Sign in / Sign up

Export Citation Format

Share Document