Updating Existing Travel Simulation Models with Small-Sample Survey Data Using Parameter Scaling Methods

Author(s):  
W. Thomas Walker ◽  
Scott H. Brady ◽  
Charles Taylor

The travel simulation models for many metropolitan areas were originally developed and calibrated with older large-sample travel surveys that can no longer be undertaken given today’s funding constraints. Small-sample travel surveys have been collected as part of model update activities required by the Intermodal Surface Transportation Efficiency Act and the Clean Air Act Amendments. Although providing useful information, these surveys are inadequate for calibrating elaborate simulation models by traditional techniques. Parameter transfer scaling based on small-sample surveys and other secondary source data can be a cost-effective alternative to large-sample surveys when existing models are being updated, particularly when the models tend to be robust and the required changes are relatively small. The use of parameter scaling methods to update the Delaware Valley Planning Commission’s existing travel simulation models is demonstrated. All available sources of data are incorporated into the update process including current survey data, census work trips from the Census Transportation Planning Package (CTPP), transit ridership checks, highway screenline counts, and Highway Performance Monitoring System travel estimates. A synopsis of experience with parameter scaling techniques including the model changes and resulting accuracy is provided. Overall, small-sample-based parameter scaling techniques were judged to be effective. The census CTPP data were evaluated versus the home interview and were found to be useful in the model recalibration effort as a source of small-area employment data by place of work and as a supplement to home interview data for model validation. However, a home interview survey is required as the primary source of travel data for both work and nonwork trips.

2004 ◽  
Vol 41 (A) ◽  
pp. 119-130
Author(s):  
Y.-X. Lin ◽  
D. Steel ◽  
R. L Chambers

This paper applies the theory of the quasi-likelihood method to model-based inference for sample surveys. Currently, much of the theory related to sample surveys is based on the theory of maximum likelihood. The maximum likelihood approach is available only when the full probability structure of the survey data is known. However, this knowledge is rarely available in practice. Based on central limit theory, statisticians are often willing to accept the assumption that data have, say, a normal probability structure. However, such an assumption may not be reasonable in many situations in which sample surveys are used. We establish a framework for sample surveys which is less dependent on the exact underlying probability structure using the quasi-likelihood method.


2004 ◽  
Vol 41 (A) ◽  
pp. 119-130
Author(s):  
Y.-X. Lin ◽  
D. Steel ◽  
R. L Chambers

This paper applies the theory of the quasi-likelihood method to model-based inference for sample surveys. Currently, much of the theory related to sample surveys is based on the theory of maximum likelihood. The maximum likelihood approach is available only when the full probability structure of the survey data is known. However, this knowledge is rarely available in practice. Based on central limit theory, statisticians are often willing to accept the assumption that data have, say, a normal probability structure. However, such an assumption may not be reasonable in many situations in which sample surveys are used. We establish a framework for sample surveys which is less dependent on the exact underlying probability structure using the quasi-likelihood method.


2019 ◽  
Vol 7 (5) ◽  
pp. 151
Author(s):  
Lingling Wang ◽  
Dandan Zhang ◽  
Jiali Duan ◽  
Ruoran Lyu

2019 ◽  
Vol 11 (1) ◽  
pp. 156-173
Author(s):  
Spenser Robinson ◽  
A.J. Singh

This paper shows Leadership in Energy and Environmental Design (LEED) certified hospitality properties exhibit increased expenses and earn lower net operating income (NOI) than non-certified buildings. ENERGY STAR certified properties demonstrate lower overall expenses than non-certified buildings with statistically neutral NOI effects. Using a custom sample of all green buildings and their competitive data set as of 2013 provided by Smith Travel Research (STR), the paper documents potential reasons for this result including increased operational expenses, potential confusion with certified and registered LEED projects in the data, and qualitative input. The qualitative input comes from a small sample survey of five industry professionals. The paper provides one of the only analyses on operating efficiencies with LEED and ENERGY STAR hospitality properties.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Weitong Cui ◽  
Huaru Xue ◽  
Lei Wei ◽  
Jinghua Jin ◽  
Xuewen Tian ◽  
...  

Abstract Background RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. Results Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. Conclusions High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.


1985 ◽  
Vol 49 (5) ◽  
pp. 1238-1244 ◽  
Author(s):  
J. H. M. Wösten ◽  
J. Bouma ◽  
G. H. Stoffelsen

Sign in / Sign up

Export Citation Format

Share Document