Mechanistic Evaluation of Test Data from Long-Term Pavement Performance Jointed Plain Concrete Pavement Test Sections

Author(s):  
Y. Jane Jiang ◽  
Shiraz D. Tayabji

Over the years, pavement engineers have attempted to develop rational mechanistic-empirical (M-E) methods for predicting pavement performance. In fact, the next version of AASHTO’s Guide for Design of Pavements is planned to be mechanistically based. Many M-E procedures have been developed on the basis of a combination of laboratory test data, theory, and limited field verification. Therefore, it is important to validate and calibrate these procedures using additional data from in-service pavements. The Long-Term Pavement Performance (LTPP) program data provide the means to evaluate and improve these models. A study was conducted to assess the performance of some of the existing concrete pavement M-E-based distress prediction procedures when used in conjunction with the data being collected as part of the LTPP program. Fatigue cracking damage was estimated using the NCHRP 1–26 approach and compared with observed fatigue damage at 52 GPS-3 test sections. It was shown that the LTPP data can be used successfully to develop better insight into pavement behavior and to improve pavement performance.

Author(s):  
Mary Robbins ◽  
Nam Tran ◽  
Audrey Copeland

Initial performance period is an important input in life-cycle cost analysis (LCCA). An objective of this study was thus to determine actual initial performance periods, as the pavement age at first rehabilitation, for asphalt and concrete pavements using Long-Term Pavement Performance (LTPP) program data. In addition, most agencies use International Roughness Index (IRI), a measure of pavement roughness applicable to both asphalt and concrete pavements, in their decision-making and performance-evaluation process. A secondary objective was, therefore, to determine the pavement roughness condition at the time of first rehabilitation using the same dataset. Based on surveys of highway agencies, initial performance periods frequently used in LCCA for asphalt pavements are between 10 and 15 years, while the average asphalt pavement age at time of first rehabilitation in the LTPP program was found to be approximately 18 years. For concrete pavements, most initial performance periods used in LCCA are between 20 and 25 years, whereas the average concrete pavement age at the time of first rehabilitation in the LTPP program is about 24 years. This suggests initial performance period values used for LCCA do not adequately represent the actual age of asphalt pavements at the time of first rehabilitation, while they are generally representative of actual concrete pavement age at the time of first rehabilitation. Also, it was found that asphalt pavements are typically rehabilitated when they are in good or fair condition according to Federal Highway Administration (FHWA) IRI criteria whereas concrete pavements are typically not rehabilitated until the pavement is in fair or poor condition.


2021 ◽  
Author(s):  
Bohuslav Slánský ◽  
Vit Šmilauer ◽  
Jiří Hlavatý ◽  
Richard Dvořák

A jointed plain concrete pavement represents a reliable, historically proven technical solution for highly loaded roads, highways, airports and other industrial surfaces. Excellent resistance to permanent deformations (rutting) and also durability and maintenance costs play key roles in assessing the economic benefits, rehabilitation plans, traffic closures, consumption and recycling of materials. In the history of concrete pavement construction, slow-to-normal hardening Portland cement was used in Czechoslovakia during the 1970s-1980s. The pavements are being replaced after 40-50 years of service, mostly due to vertical slab displacements due to missing dowel bars. However, pavements built after 1996 used rapid hardening cements, resulting in long-term surface cracking and decreased durability. In order to build durable concrete pavements, slower hardening slag-blended binders were designed and tested in the restrained ring shrinkage test and in isothermal calorimetry. Corresponding concretes were tested mainly for the compressive/tensile strength evolution and deicing salt-frost scaling to meet current specifications. The pilot project was executed on a 14 km highway, where a unique temperature-strain monitoring system was installed to provide long-term data from the concrete pavement. A thermo-mechanical coupled model served for data validation, showing a beneficial role of slower hydration kinetics. Continuous monitoring interim results at 24 months have revealed small curling induced by drying and the overall small differential shrinkage of the slab.


1998 ◽  
Vol 1629 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Hesham A. Ali ◽  
Shiraz D. Tayabji

In recognition of the potential of mechanistic-empirical (M-E) methods in analyzing pavements and predicting their performance, pavement engineers around the country have been advocating the movement toward M-E design methods. In fact, the next AASHTO Guide for Design of Pavement Structures is planned to be mechanistically based. Since many of the performance models used in the M-E methods are laboratory-derived, it is important to validate these models using data from in-service pavements. The Long-Term Pavement Performance (LTPP) program data provide the means to evaluate and improve these models. The fatigue and rutting performances of LTPP flexible pavements were predicted using some well-known M-E models, given the loading and environmental conditions of these pavements. The predicted performances were then compared with actual fatigue cracking and rutting observed in these pavements. Although more data are required to arrive at a more conclusive evaluation, fatigue cracking models appeared to be consistent with observations, whereas rutting models showed poor agreement with the observed rutting. Continuous functions that relate fatigue cracking to fatigue damage were developed.


2006 ◽  
Vol 33 (10) ◽  
pp. 1279-1286
Author(s):  
Jong-Suk Jung ◽  
Emmanuel B Owusu-Antwi ◽  
Ji-Hwan An

The objective of this study was to identify and quantify design and construction features most important to joint faulting of joint plain concrete pavements. With data obtained from the Long-Term Pavement Performance (LTPP) database, an analysis approach that combined pavement engineering expertise and modern data analysis techniques was to develop guidelines for improved design and construction of Portland cement concrete (PCC) pavement. The approach included typical preliminary analyses, but emphasis was placed on using a series of multivariate data analysis techniques. Discriminant analysis was used to develop models that classify individual pavement into performance groups developed by cluster analysis, which was used to partition the pavements into three distinct groups representing good, normal, and poor performance. These models can be used to classify and evaluate additional or new pavements performance throughout the pavement's design life. To quantify the levels of the key design and construction features that contribute to performance, the classification and regression tree procedure was used to develop tree-based models for performance measure. The analysis approach described was used to develop the guideline on the key design and construction features that can be used by designers to decrease joint faulting of jointed plain concrete pavements (JPCPs).Key words: faulting, Long-Term Pavement Performance (LTPP), jointed plain concrete pavement (JPCP), cluster analysis, discriminant analysis, classification and regression tree (CART) analysis.


2021 ◽  
Author(s):  
Michael Darter

Rapid Strength Concrete (RSC) slabs on six California jointed plain concrete pavement (JPCP) highway projects were surveyed. These projects had been previously surveyed in 2008 at 3-years of age and by 2018 had reached a service life of 13-years. Of the initial 5430 slabs examined in 2008, a total of 1493 RSC slabs, located on 12 traffic lanes, were observed and distress types recorded again in 2018. These slabs included both CTS and 4x4 RSC located in both inner and outer lanes. Only a small percentage (1.4%) of the 5,430 RSC slabs exhibited any distress in 2008 after 3-years' service and the increases were small over the next 10 years of service with the exception of transverse fatigue cracks. The transverse (top down fatigue) type of cracking had the highest percentage and largest increase of any distress type. The heavy truck outside lanes exhibited 21% transversely cracked RSC slabs and the inner passing lanes 3%. The outer truck lanes carried over 3 times more trucks than inner lanes. The RSC slabs were mostly 200-223 mm thick and thus susceptible to fatigue damage. The overall performance of the RSC slabs (both CTS and 4x4 RSC materials) were similar and considered to be outstanding over 13 years with a large majority expected to survive many more years.


Author(s):  
Marcelo G. Bustos ◽  
Juan E. Marcet ◽  
Oscar V. Cordo ◽  
Pablo Girardi Mancini ◽  
Miguel O. Pereyra ◽  
...  

Author(s):  
Georgene Malone Geary ◽  
Yichang (James) Tsai

3D pavement data are increasing in use and availability and open up new opportunities to evaluate variability in pavements. The majority of information we currently have on existing pavements is the result of the Long Term Pavement Performance Program (LTPP). While the program is comprehensive and the data are immense, the study sections are typically only 500 ft in length, which limits the ability to accurately gauge the variability of the distresses in a pavement over a longer length, especially cracking in Jointed Plain Concrete (JPC) slabs. 3D pavement data already collected by transportation agencies have the opportunity to complement LTPP data to analyze variability and improve the use of LTPP data. This paper presents a unique method to complement LTPP data using 3D pavement data, consisting of four steps: (1) crack detection using 3D pavement data; (2) categorize detected cracks by orientation and extent by slab using 3D slab-based methodology; (3) convert categorized slab level cracking into mechanistic-empirical pavement design guide cracking; and (4) perform local calibration with the 3D converted input values. The method uses 3D pavement data to provide a non-discrete value for percent cracking in GPS-3 LTPP sections for the purposes of local calibration. The proposed method is shown to be feasible using 3D pavement data and two JPC LTPP sections in Georgia. The method could be extended to any of the state Departments of Transportation that have active LTPP sections and are now or will shortly be collecting 3D pavement data.


Sign in / Sign up

Export Citation Format

Share Document