Design and Performance of Jointless Bridges in Ontario: New Technical and Material Concepts

2000 ◽  
Vol 1696 (1) ◽  
pp. 109-121 ◽  
Author(s):  
Iqbal Husain ◽  
Dino Bagnariol

It is well recognized that leaking expansion joints at the ends of bridge decks have led to the premature deterioration of bridge components. The elimination of these maintenance-prone joints not only yields immediate economic benefits but also improves the long-term durability of bridges. In Ontario, Canada, “jointless” bridges have been used for many years. Recently, the use of two main types of these bridges has increased dramatically. The first type is an “integral abutment” bridge that comprises an integral deck and abutment system supported on flexible piles. The approach slabs are also continuous with the deck slab. The flexible foundation allows the anticipated deck movements to take place at the end of the approach slab. Control joint details have been developed to allow movements at this location. The second type is a “semi-integral abutment” bridge that also allows expansion joints to be eliminated from the end of the bridge deck. The approach slabs are continuous with the deck slab, and the abutments are supported on rigid foundations (spread footings). The superstructure is not continuous with the abutments, and conventional bearings are used to allow horizontal movements between the deck and the abutments. A control joint is provided at the end of the approach slab that is detailed to slide in between the wing walls. Some of the design methods and construction details that are used in Ontario for integral and semi-integral abutment bridges are summarized. A review of the actual performance of existing bridges is also presented.

Author(s):  
Yufeng Tang ◽  
Bruno Briseghella ◽  
Junqing Xue ◽  
Peiquan Zhang ◽  
Fuyun Huang ◽  
...  

<p>The application of jointless bridges has been increasing year by year, because it could reduce the life‐cycle cost and improve the riding comfort. The approach slab in jointless bridges does not only have the function of road transition which is the same as the approach slab in bridges with expansion joints, but also transfer and absorb the deformation produced by the thermal expansion and contraction of the girder. The Grade Flat Approach Slab (GFAS) horizontally placed on the subgrade is one of the most common types of the approach slab in jointless bridges. The material placed between GFAS and subgrade should be able to properly slide to reduce the stress in GFAS. The friction coefficient between GFAS and sliding material is an important parameter affecting the mechanical behavior of GFAS in jointless bridges. In this paper, the tests of GFAS with different sliding materials subjected to horizontal displacement were conducted to obtain the corresponding friction coefficients (from 0.34 to 0.68). The mathematical model of bilinear spring could be adapted to simulate the friction function between GFAS and different sliding materials. One Deck‐Extension Bridge (DEB) that is one type of jointless bridges was chosen as a case study. The finite element model was implemented by using Midas‐Civil software. The influence of GFAS with different sliding materials on the mechanical properties of DEB under temperature variation was investigated. It can be concluded that the influence of the friction coefficient between GFAS and sliding material on the bending moment of DEB should be taken into account.</p>


2021 ◽  
Author(s):  
Junqing Xue ◽  
Dong Xu ◽  
Yufeng Tang ◽  
Bruno Briseghella ◽  
Fuyun Huang ◽  
...  

<p><br clear="none"/></p><p>The vulnerability problem of expansion joints could be fundamentally resolved using the concept of jointless bridges. The longitudinal deformation of the superstructure can be transferred to the backfill by using the approach slab. The flat buried approach slab (FBAS) has been used in many jointless bridges in European countries. In order to understand the mechanical performance of FBAS and soil deformation, a finite element model (FEM) was implemented in PLAXIS. Considering the friction between the FBAS and soil, the buried depth, the FBAS length and thickness as parameters, a parametric analysis was carried out. According to the obtained results and in order to reduce the soil deformation above the FBAS, it is suggested to increase the friction between the FBAS and sandy soil, and the buried depth of FBAS. Moreover, it should be paid attention to the vertical soil deformation and the concrete tensile stress of FBAS in pulling condition.</p>


2014 ◽  
Vol 51 (7) ◽  
pp. 713-734 ◽  
Author(s):  
Shelley A. Huntley ◽  
Arun J. Valsangkar

Integral abutment bridges accommodate thermal superstructure movements through flexible foundations rather than expansion joints. While these structures are a common alternative to conventional design, the literature on measured field stresses in piles supporting integral abutments appears to be quite limited. Therefore, field data from strain gauges installed on the abutment foundation piles of a 76 m long; two-span integral abutment bridge are the focus of this paper. Axial load, weak- and strong-axis bending moments of the foundation piles, as well as abutment movement and backfill response, are presented and discussed. Results indicate that the abutment foundation piles are bending in double curvature about the weak axis, as a result of thermal bridge movements, and bending also about the strong axis due to tilting of the abutments. A simple subgrade modulus approach is used to show its applicability in predicting behaviour under lateral loading. In the past, much emphasis has been placed on the lateral displacements of piles and less on variations of axial load. In this paper, a new hypothesis, which offers insight into the mechanisms behind the observed thermal variations in axial load, is proposed and assessed. The data from the field monitoring are also compared with the limited data reported in the literature.


2013 ◽  
Vol 639-640 ◽  
pp. 183-190 ◽  
Author(s):  
Xue Fang Zhan ◽  
Xu Dong Shao ◽  
Guo Li Liu

Semi-integral abutment fully jointless bridges, which connecting the main girder, the approach slab and the reinforced approach pavement all together and eliminating all the deck expansion joints and also the approach reinforced pavement joint is studied. As we know, the temperature variation is the key influence factor of the basic performance of the fully jointless bridges. When the temperature drops, the cracks appeared along the reinforced approach pavement. In the paper, emphasisis primarily made on simulating the temperature drops. A 28m full scale model stretching experiment simulating the temperature drops has been carried out in laboratory. After the experiment simulation we found that:(1)The crack width of approach pavement distribute uniformly at the pre-cut joints and their crack widths ranged mainly between 0.2mm and 0.8mm and the mean crack width was 0.37mm when the maximum stretch length at the end of the approach slab reached 9.87mm, which was within AASHTO and the Chinese highway pavement specification allowable value; (2)the load transfer capability coefficient at the third pre-cut joint with the maximum crack width (0.97mm) was 84%,which also satisfied the allowance of Chinese highway pavement specification. So this reinforced approach pavement is safe to connect semi-integral abutment bridge for the temperature length of 45m with the maximum temperature decrement of =20 ºС from the average reference construction temperature.


2016 ◽  
Vol 106 (13) ◽  
pp. 61-69
Author(s):  
Miguel MUNOZ ◽  
Junqing XUE ◽  
Bruno BRISEGHELLA ◽  
Camillo NUTI

Sign in / Sign up

Export Citation Format

Share Document