Particle Number and Size Distribution of Emissions during Light-Duty Vehicle Cold Start

Author(s):  
Mitchell K. Robinson ◽  
Karen M. Sentoff ◽  
Britt A. Holmén
2018 ◽  
Vol 8 (11) ◽  
pp. 2275 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Simone Casadei ◽  
Michele Mazzini ◽  
Mario Sammarco ◽  
Gisella Montabone ◽  
...  

The recently introduced Real Driving Emissions (RDE) light-duty vehicle emissions regulation requires testing with Portable Emissions Measurement Systems (PEMS) during type approval and in-service conformity. The studies on the accuracy of PEMS today are limited. An inter-laboratory correlation exercise with PEMS took place in Italy in 2017. Eight laboratories measured exhaust emissions from a Golden Euro 6 gasoline vehicle with a Golden PEMS installed in it, along with the individual lab’s own PEMS, following the regulated laboratory method (bags from the dilution tunnel). The data of the exercise were used to estimate the repeatability and reproducibility of the methodology with PEMS. The statistical analysis estimated reproducibility of 2.9% (bags) to 5.5% (lab PEMS) for CO2, 20–25% for CO (all methods), 23–31% for NOx (all methods), and 29% (tunnel, Golden PEMS) to 39% (lab PEMS) for particle number. The mean differences of the PEMS to the regulated method were ±1.5 g/km (or ±1%) for CO2, <16 mg/km (or <5%) for CO, <4 mg/km (or <11%) for NOx and 1 × 1011 particles/km (40%) for particle number. The results of this study confirm the satisfactory performance of PEMS and the permissible tolerances introduced in RDE regulation.


Fuel ◽  
2017 ◽  
Vol 197 ◽  
pp. 373-387 ◽  
Author(s):  
Pi-qiang Tan ◽  
Yuan Li ◽  
Zhi-yuan Hu ◽  
Di-ming Lou

2011 ◽  
Vol 396-398 ◽  
pp. 1184-1189
Author(s):  
De Qing Mei ◽  
Shu Long Wang ◽  
Ping Sun ◽  
Yin Nan Yuan

Biodiesel is a renewable and clean alternative fuel. The exhausts emissions from light duty vehicle fueled with biodiesel and No.0 diesel fuel are measured and analyzed. The modular features of emissions under transient operating mode is investigated on. As compared to No.0 diesel fuel, experimental results show that the HC and CO emissions of cold start are improved much from light duty vehicle fueled with biodiesel and also the specific emissions of HC, CO and PM decrease 62.0%, 42.5% and 46.2% respectively, but the NOx specific emission rise 7.1% up. Chemical energy is released during the combustion of fuel, which produced CO2 and H2O, at the same time the N2 in air would also be oxygenated to NOx. So the concentration rate of NOx/CO2 is used to describe the regularity of NOx emission with the transient operating mode.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 243 ◽  
Author(s):  
Victor Valverde ◽  
Bernat Mora ◽  
Michaël Clairotte ◽  
Jelica Pavlovic ◽  
Ricardo Suarez-Bertoa ◽  
...  

Tailpipe emissions of a pool of 13 Euro 6b light-duty vehicles (eight diesel and five gasoline-powered) were measured over an extensive experimental campaign that included laboratory (chassis dynamometer), and on-road tests (using a portable emissions measurement system). The New European Driving Cycle (NEDC) and the Worldwide harmonised Light-duty vehicles Test Cycle (WLTC) were driven in the laboratory following standard and extended testing procedures (such as low temperatures, use of auxiliaries, modified speed trace). On-road tests were conducted in real traffic conditions, within and outside the boundary conditions of the regulated European Real-Driving Emissions (RDE) test. Nitrogen oxides (NOX), particle number (PN), carbon monoxide (CO), total hydrocarbons (HC), and carbon dioxide (CO2) emission factors were developed considering the whole cycles, their sub-cycles, and the first 300 s of each test to assess the cold start effect. Despite complying with the NEDC type approval NOX limit, diesel vehicles emitted, on average, over the WLTC and the RDE 2.1 and 6.7 times more than the standard limit, respectively. Diesel vehicles equipped with only a Lean NOX trap (LNT) averaged six and two times more emissions over the WLTC and the RDE, respectively, than diesel vehicles equipped with a selective catalytic reduction (SCR) catalyst. Gasoline vehicles with direct injection (GDI) emitted eight times more NOX than those with port fuel injection (PFI) on RDE tests. Large NOX emissions on the urban section were also recorded for GDIs (122 mg/km). Diesel particle filters were mounted on all diesel vehicles, resulting in low particle number emission (~1010 #/km) over all testing conditions including low temperature and high dynamicity. GDIs (~1012 #/km) and PFIs (~1011 #/km) had PN emissions that were, on average, two and one order of magnitude higher than for diesel vehicles, respectively, with significant contribution from the cold start. PFIs yielded high CO emission factors under high load operation reaching on average 2.2 g/km and 3.8 g/km on WLTC extra-high and RDE motorway, respectively. The average on-road CO2 emissions were ~33% and 41% higher than the declared CO2 emissions at type-approval for diesel and gasoline vehicles, respectively. The use of auxiliaries (AC and lights on) over the NEDC led to an increase of ~20% of CO2 emissions for both diesel and gasoline vehicles. Results for NOX, CO and CO2 were used to derive average on-road emission factors that are in good agreement with the emission factors proposed by the EMEP/EEA guidebook.


Sign in / Sign up

Export Citation Format

Share Document