scholarly journals Emission Factors Derived from 13 Euro 6b Light-Duty Vehicles Based on Laboratory and On-Road Measurements

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 243 ◽  
Author(s):  
Victor Valverde ◽  
Bernat Mora ◽  
Michaël Clairotte ◽  
Jelica Pavlovic ◽  
Ricardo Suarez-Bertoa ◽  
...  

Tailpipe emissions of a pool of 13 Euro 6b light-duty vehicles (eight diesel and five gasoline-powered) were measured over an extensive experimental campaign that included laboratory (chassis dynamometer), and on-road tests (using a portable emissions measurement system). The New European Driving Cycle (NEDC) and the Worldwide harmonised Light-duty vehicles Test Cycle (WLTC) were driven in the laboratory following standard and extended testing procedures (such as low temperatures, use of auxiliaries, modified speed trace). On-road tests were conducted in real traffic conditions, within and outside the boundary conditions of the regulated European Real-Driving Emissions (RDE) test. Nitrogen oxides (NOX), particle number (PN), carbon monoxide (CO), total hydrocarbons (HC), and carbon dioxide (CO2) emission factors were developed considering the whole cycles, their sub-cycles, and the first 300 s of each test to assess the cold start effect. Despite complying with the NEDC type approval NOX limit, diesel vehicles emitted, on average, over the WLTC and the RDE 2.1 and 6.7 times more than the standard limit, respectively. Diesel vehicles equipped with only a Lean NOX trap (LNT) averaged six and two times more emissions over the WLTC and the RDE, respectively, than diesel vehicles equipped with a selective catalytic reduction (SCR) catalyst. Gasoline vehicles with direct injection (GDI) emitted eight times more NOX than those with port fuel injection (PFI) on RDE tests. Large NOX emissions on the urban section were also recorded for GDIs (122 mg/km). Diesel particle filters were mounted on all diesel vehicles, resulting in low particle number emission (~1010 #/km) over all testing conditions including low temperature and high dynamicity. GDIs (~1012 #/km) and PFIs (~1011 #/km) had PN emissions that were, on average, two and one order of magnitude higher than for diesel vehicles, respectively, with significant contribution from the cold start. PFIs yielded high CO emission factors under high load operation reaching on average 2.2 g/km and 3.8 g/km on WLTC extra-high and RDE motorway, respectively. The average on-road CO2 emissions were ~33% and 41% higher than the declared CO2 emissions at type-approval for diesel and gasoline vehicles, respectively. The use of auxiliaries (AC and lights on) over the NEDC led to an increase of ~20% of CO2 emissions for both diesel and gasoline vehicles. Results for NOX, CO and CO2 were used to derive average on-road emission factors that are in good agreement with the emission factors proposed by the EMEP/EEA guidebook.

2020 ◽  
Author(s):  
Evangelia Kostenidou ◽  
Alvaro Martinez-Valiente ◽  
Badr R'Mili ◽  
Baptiste Marques ◽  
Brice Temime-Roussel ◽  
...  

Abstract. Changes in engine technologies and after-treatment devices can profoundly alter the chemical composition of the emitted pollutants. To investigate these effects, we characterized the chemical composition of particles emitted from three diesel and four gasoline Euro 5 light duty vehicles on a chassis dynamometer facility. Black carbon (BC) was the dominant emitted species with emission factors (EFs) varying from 0.2 to 7.1 mg km−1 for gasoline cars and 0.003 to 0.08 mg km−1 for diesel cars. For gasoline cars, the organic matter (OM) EFs varied from 5 to 103 µg km−1 for direct injection (GDI) vehicles, and from 1 to 8 µg km−1 for port fuel injection (PFI) vehicles, while for the diesel cars it ranged between 0.15 and 65 µg km−1. Cold-start cycles and more specifically the first minutes of the cycle, contributed the largest fraction of the PM including BC, OM and Polycyclic Aromatic Hydrocarbons (PAHs). More than 40 PAHs, including methylated, nitro, oxygenated and amino PAHs were identified and quantified in both diesel and gasoline exhaust particles using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS). The PAHs emissions from the GDI technology were a factor of 4 higher compared to the vehicles equipped with a PFI system during the cold start cycle, while the nitro-PAHs fraction was much more appreciable in the GDI emissions. For two of the three diesel vehicles the PAHs emissions were close to the detection limit, but for one, which presented an after-treatment device failure, the average PAHs EF was 2.04 µg km−1. Emissions of nanoparticles (below 30 nm), mainly composed by ammonium bisulfate, were measured during the passive regeneration of the catalyzed diesel particulate filter (CDPF) vehicle. TEM images confirmed the presence of ubiquitous nanometric metal inclusions into soot particles emitted from the diesel vehicle equipped with a fuel borne catalyst – diesel particulate filter (FBC-DPF). XPS analysis of the particles emitted by the PFI car revealed both the presence of heavy elements (Ti, Zn, Ca, Si, P, Cl), and disordered soot surface with a significant concentration of carbon radical defects having possible consequences on both chemical reactivity and particle toxicity. Our findings show that different after-treatment technologies have an important effect on the level and the chemical composition of the emitted particles. In addition, this research highlights the importance of the particle filter devices condition and their regular checking.


2013 ◽  
Vol 13 (2) ◽  
pp. 450-461 ◽  
Author(s):  
Carmen Nickel ◽  
Heinz Kaminski ◽  
Bryan Hellack ◽  
Ulrich Quass ◽  
Astrid John ◽  
...  

2021 ◽  
Vol 21 (6) ◽  
pp. 4779-4796
Author(s):  
Evangelia Kostenidou ◽  
Alvaro Martinez-Valiente ◽  
Badr R'Mili ◽  
Baptiste Marques ◽  
Brice Temime-Roussel ◽  
...  

Abstract. Changes in engine technologies and after-treatment devices can profoundly alter the chemical composition of the emitted pollutants. To investigate these effects, we characterized the emitted particles' chemical composition of three diesel and four gasoline Euro 5 light-duty vehicles tested at a chassis dynamometer facility. The dominant emitted species was black carbon (BC) with emission factors (EFs) varying from 0.2 to 7.1 mg km−1 for direct-injection gasoline (GDI) vehicles, from 0.02 to 0.14 mg km−1 for port fuel injection (PFI) vehicles, and 0.003 to 0.9 mg km−1 for diesel vehicles. The organic matter (OM) EFs varied from 5 to 103 µg km−1 for GDI gasoline vehicles, from 1 to 8 µg km−1 for PFI vehicles, and between 0.15 and 65 µg km−1 for the diesel vehicles. The first minutes of cold-start cycles contributed the largest PM fraction including BC, OM, and polycyclic aromatic hydrocarbons (PAHs). Using a high-resolution time-of-flight mass spectrometer (HR-ToF-AMS), we identified more than 40 PAHs in both diesel and gasoline exhaust particles including methylated, nitro, oxygenated, and amino PAHs. Particle-bound PAHs were 4 times higher for GDI than for PFI vehicles. For two of the three diesel vehicles the PAH emissions were below the detection limit, but for one, which presented an after-treatment device failure, the average PAHs EF was 2.04 µg km−1, similar to the GDI vehicle's values. During the passive regeneration of the catalysed diesel particulate filter (CDPF) vehicle, we measured particles of diameter around 15 nm mainly composed of ammonium bisulfate. Transmission electron microscopy (TEM) images revealed the presence of ubiquitous metal inclusions in soot particles emitted by the diesel vehicle equipped with a fuel-borne-catalyst diesel particulate filter (FBC-DPF). X-ray photoelectron spectroscopy (XPS) analysis of the particles emitted by the PFI vehicle showed the presence of metallic elements and a disordered soot surface with defects that could have consequences on both chemical reactivity and particle toxicity. Our findings show that different after-treatment technologies have an important effect on the emitted particles' levels and their chemical composition. In addition, this work highlights the importance of particle filter devices' condition and performance.


2021 ◽  
Vol 13 (23) ◽  
pp. 13457
Author(s):  
Hala Aburas ◽  
Isam Shahrour

This paper analyzes the mobility restrictions in the Palestinian territory on the population and the environment. The literature review shows a scientific concern for this issue, with an emphasis on describing mobility barriers and the severe conditions experienced by the population due to these barriers as well as the impact of mobility restrictions on employment opportunities. On the other hand, the literature review also shows a deficit in quantitative analysis of the effects of mobility restrictions on the environment, particularly on energy consumption and greenhouse gas emissions. This paper aims to fill this gap through a quantitative analysis by including data collection about mobility restrictions, using network analysis to determine the impact of these restrictions on inter-urban mobility, and analysis of the resulting energy consumption and CO2 emissions. The results show that mobility restrictions induce a general increase in energy consumption and CO2 emissions. The average value of this increase is about 358% for diesel vehicles and 275% for gasoline vehicles.


2018 ◽  
Vol 8 (11) ◽  
pp. 2275 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Simone Casadei ◽  
Michele Mazzini ◽  
Mario Sammarco ◽  
Gisella Montabone ◽  
...  

The recently introduced Real Driving Emissions (RDE) light-duty vehicle emissions regulation requires testing with Portable Emissions Measurement Systems (PEMS) during type approval and in-service conformity. The studies on the accuracy of PEMS today are limited. An inter-laboratory correlation exercise with PEMS took place in Italy in 2017. Eight laboratories measured exhaust emissions from a Golden Euro 6 gasoline vehicle with a Golden PEMS installed in it, along with the individual lab’s own PEMS, following the regulated laboratory method (bags from the dilution tunnel). The data of the exercise were used to estimate the repeatability and reproducibility of the methodology with PEMS. The statistical analysis estimated reproducibility of 2.9% (bags) to 5.5% (lab PEMS) for CO2, 20–25% for CO (all methods), 23–31% for NOx (all methods), and 29% (tunnel, Golden PEMS) to 39% (lab PEMS) for particle number. The mean differences of the PEMS to the regulated method were ±1.5 g/km (or ±1%) for CO2, <16 mg/km (or <5%) for CO, <4 mg/km (or <11%) for NOx and 1 × 1011 particles/km (40%) for particle number. The results of this study confirm the satisfactory performance of PEMS and the permissible tolerances introduced in RDE regulation.


Author(s):  
Parisa Bastani ◽  
John B. Heywood ◽  
Chris Hope

On-road transportation contributes 22% of the total CO2 emissions and more than 44% of oil consumption in the U.S. Technological advancements and use of alternative fuels are often suggested as ways to reduce these emissions. However, many parameters and relationships that determine the future characteristics of the light-duty vehicle fleet and how they change over time are inherently uncertain. Policy makers need to make decisions today given these uncertainties, to shape the future of light-duty vehicles. Decision makers thus need to know the impact of uncertainties on the outcome of their decisions and the associated risks. This paper explores a carefully constructed detailed pathway that results in a significant reduction in fuel use and GHG emissions in 2050. Inputs are assigned realistic uncertainty bounds, and the impact of uncertainty on this pathway is analyzed. A novel probabilistic fleet model is used here to quantify the uncertainties within advanced vehicle technology development, and life-cycle emissions of alternative fuels and renewable sources. Based on the results from this study, the expected fuel use is about 500 and 350 billion litres gasoline equivalent, with a standard deviation of about 40 and 80 billion litres in years 2030 and 2050 respectively. The expected CO2 emissions are about 1,360 and 840 Mt CO2 equivalent with a spread of about 130 and 260 Mt CO2 equivalent in 2030 and 2050 respectively. Major contributing factors in determining the future fuel consumption and emissions are also identified and include vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel consumption of naturally-aspirated engines, and percentage of gasoline displaced by cellulosic ethanol. This type of analysis allows policy makers to better understand the impact of their decisions and proposed policies given the technological and market uncertainties that we face today.


2019 ◽  
Vol 172 ◽  
pp. 1-9 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Tero Lähde ◽  
Yannis Drossinos

Sign in / Sign up

Export Citation Format

Share Document