scholarly journals CLIMATE CHANGE AND WATER RESOURCE SUSTAINABILITY INDEX FOR A WATER-STRESSED BASIN IN BRAZIL: THE CASE STUDY OF RIO VERDE GRANDE BASIN

Nativa ◽  
2018 ◽  
Vol 6 (5) ◽  
pp. 480
Author(s):  
Mônica Carvalho de Sá ◽  
Edson De Oliveira Vieira ◽  
Flavia Mazzer Rodrigues ◽  
Lorrana Cavalcanti Albuquerque ◽  
Núbia Ribeiro Caldeira

MUDANÇAS CLIMÁTICAS E A SUSTENTABILIDADES DOS RECURSOS HÍDRICOS EM BACIA HIDROGRÁFICA COM ESCASSEZ HÍDRICA NO BRASIL: O CASO DA BACIA DE RIO VERDE GRANDE A bacia de Rio Verde Grande está localizada 87% na parte norte do estado de Minas Gerais e 13% no estado da Bahia, em uma região com clima semiárido, apresentando longos e intensos períodos de seca. Esta característica climática afeta diretamente a disponibilidade de recursos hídricos e, conseqüentemente, o desenvolvimento das principais atividades da região que são pecuária e agricultura irrigada. Não há estudos que avaliem o efeito das mudanças climáticas na disponibilidade de água e na sustentabilidade de atividades com alta demanda de água na bacia de Rio Verde Grande. O objetivo deste estudo foi analisar as mudanças prováveis na disponibilidade de água na bacia de Rio Verde Grande e a sustentabilidade dos recursos hídricos para as atividades usuárias de água, utilizando séries sintéticas geradas através de programas de modelagem climática e hidrológica. Este estudo realizou as projeções climáticas utilizando os Global Climate Models do Coupled Model Intercomparison Project Phase 5. Com base nos cálculos dos índices de sustentabilidade e na comparação dos cenários atuais e futuros, observou-se que, mesmo com todas as intervenções propostas pelo Plano de Recursos Hídricos da Bacia Rio Verde Grande implementadas, houve uma redução na sustentabilidade da água Recursos em algumas sub-bacias devido à mudança climática.Palavras-chave: CMIP5, modelo WEAP, vulnerabilidade ABSTRACT: The Rio Verde Grande basin is a water-stressed basin, which is 87% in the northern part of Minas Gerais and 13% in Bahia, Brazil. It has a semi-arid climate with long and intense periods of drought. This climatic directly affects the availability of water resources and the development of the main activities in the region. There are presently no studies that evaluate the effect of climate change on the availability of water in the Rio Verde Grande basin and the sustainability of high water demand activities. The objective of this study was to analyze future changes in the availability of water in the Rio Verde Grande basin, and the sustainability of water for the major water users. This was done using a synthetic series generated through climatic and hydrological modeling programs. This study performed climate projections using the Global Climate Models of the Coupled Model Intercomparison Project Phase 5. The calculation of sustainability indexes and a comparison between current and future scenarios, it was observed that even if all the interventions proposed by the Water Resources Plan of the Rio Verde Grande basin are implemented, there will still be a reduction in the sustainability of water resources in some sub-basins, due to climate change.Keywords: CMIP5, WEAP model, vulnerability.

2022 ◽  
Author(s):  
Mohammad Naser Sediqi ◽  
Vempi Satriya Adi Hendrawan ◽  
Daisuke Komori

Abstract The global climate models (GCMs) of Coupled Model Intercomparison Project phase 6 (CMIP6) were used spatiotemporal projections of precipitation and temperature over Afghanistan for three shared socioeconomic pathways (SSP1-2.6, 2-4.5 and 5-8.5) and two future time horizons, early (2020-2059) and late (2060-2099). The Compromise Programming (CP) approach was employed to order the GCMs based on their skill to replicate precipitation and temperature climatology for the reference period (1975-2014). Three models, namely ACCESS-CM2, MPI-ESM1-2-LR, and FIO-ESM-2-0, showed the highest skill in simulating all three variables, and therefore, were chosen for the future projections. The ensemble mean of the GCMs showed an increase in maximum temperature by 1.5-2.5oC, 2.7-4.3 oC, and 4.5-5.3 oC and minimum temperature by 1.3-1.8 oC, 2.2-3.5 oC, and 4.6-5.2 oC for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively in the later period. Meanwhile, the changes in precipitation in the range of -15-18%, -36-47% and -40-68% for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The temperature and precipitation were projected to increase in the highlands and decrease over the deserts, indicating dry regions would be drier and wet regions wetter.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1245
Author(s):  
Frank Kreienkamp ◽  
Philip Lorenz ◽  
Tobias Geiger

Climate modelling output that was provided under the latest Coupled Model Intercomparison Project (CMIP6) shows significant changes in model-specific Equilibrium Climate Sensitivity (ECS) as compared to CMIP5. The newer versions of many Global Climate Models (GCMs) report higher ECS values that result in stronger global warming than previously estimated. At the same time, the multi-GCM spread of ECS is significantly larger than under CMIP5. Here, we analyse how the differences between CMIP5 and CMIP6 affect climate projections for Germany. We use the statistical-empirical downscaling method EPISODES in order to downscale GCM data for the scenario pairs RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5. We use data sets of the GCMs CanESM, EC-Earth, MPI-ESM, and NorESM. The results show that the GCM-specific changes in the ECS also have an impact at the regional scale. While the temperature signal under regional climate change remains comparable for both CMIP generations in the MPI-ESM chain, the temperature signal increases by up to 3 °C for the RCP8.5/SSP5-8.5 scenario pair in the EC-Earth chain. Changes in precipitation are less pronounced and they only show notable differences at the seasonal scale. The reported changes in the climate signal will have direct consequences for society. Climate change impacts previously projected for the high-emission RCP8.5 scenario might occur equally under the new SSP2-4.5 scenario.


2016 ◽  
Vol 56 ◽  
pp. 13.1-13.20 ◽  
Author(s):  
J.-L. F. Li ◽  
D. E. Waliser ◽  
G. Stephens ◽  
Seungwon Lee

Abstract The authors present an observationally based evaluation of the vertically resolved cloud ice water content (CIWC) and vertically integrated cloud ice water path (CIWP) as well as radiative shortwave flux downward at the surface (RSDS), reflected shortwave (RSUT), and radiative longwave flux upward at top of atmosphere (RLUT) of present-day global climate models (GCMs), notably twentieth-century simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), and compare these results to those of the third phase of the Coupled Model Intercomparison Project (CMIP3) and two recent reanalyses. Three different CloudSat and/or Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined ice water products and two methods are used to remove the contribution from the convective core ice mass and/or precipitating cloud hydrometeors with variable sizes and falling speeds so that a robust observational estimate can be obtained for model evaluations. The results show that, for annual mean CIWC and CIWP, there are factors of 2–10 (either over- or underestimate) in the differences between observations and models for a majority of the GCMs and for a number of regions. Most of the GCMs in CMIP3 and CMIP5 significantly underestimate the total ice water mass because models only consider suspended cloud mass, ignoring falling and convective core cloud mass. For the annual means of RSDS, RLUT, and RSUT, a majority of the models have significant regional biases ranging from −30 to 30 W m−2. Based on these biases in the annual means, there is virtually no progress in the simulation fidelity of RSDS, RLUT, and RSUT fluxes from CMIP3 to CMIP5, even though there is about a 50% bias reduction improvement of global annual mean CIWP from CMIP3 to CMIP5. It is concluded that at least a part of these persistent biases stem from the common GCM practice of ignoring the effects of precipitating and/or convective core ice and liquid in their radiation calculations.


2020 ◽  
Vol 16 (5) ◽  
pp. 1847-1872 ◽  
Author(s):  
Chris M. Brierley ◽  
Anni Zhao ◽  
Sandy P. Harrison ◽  
Pascale Braconnot ◽  
Charles J. R. Williams ◽  
...  

Abstract. The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) – hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of −0.3 K, which is −0.2 K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.


Author(s):  
Efrain Lujano-Laura ◽  
Liz S. Hidalgo-Sanchez ◽  
Bernardino Tapia-Aguilar ◽  
Apolinario Lujano-Laura

<p>La investigación, se realizó en el ámbito del altiplano Peruano, con el objetivo de evaluar los cambios en la disponibilidad del recurso hídrico bajo escenarios de emisiones de Modelos Climáticos Globales (MCG) del Proyecto de Intercomparación de Modelos Acoplados Fase 5 (CMIP5). La distribución espacio-temporal de la precipitación, se tomó como referencia la climatología 1971 – 2000 y sus proyecciones para el horizonte 2071 – 2100, así mismo para la simulación de caudales se utilizó el modelo hidrológico conceptual de Ingeniería Rural de 2 parámetros, cuyas evaluaciones estadísticas se midieron a través de la eficiencia de Nash y Sutcliffe. El Simulador del Sistema Terrestre y el Clima de la Comunidad Australiana versiones 1.0 y 1.3 (ACCESS1.0 y 1.3) y el Modelo para la Investigación Interdisciplinaria sobre el Clima versión 5 (MIROC5), simularon adecuadamente el ciclo estacional de la precipitación y en base a los resultados, los cambios de precipitaciones para los caminos de concentración representativas (RCP4.5 y 8.5) a finales del siglo XXI, indican un ligero incremento de la precipitación anual en la cuenca Ramis y una disminución para la cuenca Ilave. Es así que las variaciones de las precipitaciones son también reflejadas en los caudales, concluyéndose que las mayores disminuciones del recurso hídrico se darían para la cuenca Ilave, con incrementos ligeros en promedio anual para la cuenca Ramis.</p><p><strong>Palabras clave:</strong> Altiplano Peruano, cambio climático, escenarios climáticos, disponibilidad hídrica.</p><p align="center"><strong>ABSTRACT</strong></p><p>The research was conducted in the area of the Peruvian altiplano with the aim to assess changes in the availability of water resources under emission scenarios Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). The spatio-temporal precipitation distribution was taken as reference climatology 1971 - 2000 and its projections for the horizon 2071 - 2100, also for simulating flows conceptual hydrological model of Rural Engineering 2 parameters are used, whose evaluations statistics were measured through efficiency Nash and Sutcliffe. The Australian Community Climate and Earth System Simulator versions 1.0 and 1.3 (ACCESS1.0 and 1.3) and Model for Interdisciplinary Research on Climate version 5 (MIROC5), adequately simulated the seasonal cycle of precipitation and based results, changes in rainfall for Representative Concentration Pathways (RCP4.5 and 8.5) at the end of the XXI century, indicate a slight increase of annual rainfall of the basin Ramis and a decrease for the Ilave basin. Is thus that variations in rainfall are also reflected in the flows, concluding that the largest decreases of water resources would be given for the Ilave basin, with slight increases in annual average for the basin Ramis.</p><p><strong>Keywords: </strong>Peruvian altiplano,<strong> </strong>climate change, climate scenarios, water availability.</p>


2012 ◽  
Vol 25 (15) ◽  
pp. 5416-5431 ◽  
Author(s):  
Masahiro Watanabe ◽  
Hideo Shiogama ◽  
Tokuta Yokohata ◽  
Youichi Kamae ◽  
Masakazu Yoshimori ◽  
...  

Abstract This study proposes a systematic approach to investigate cloud-radiative feedbacks to climate change induced by an increase of CO2 concentrations in global climate models (GCMs). Based on two versions of the Model for Interdisciplinary Research on Climate (MIROC), which have opposite signs for cloud–shortwave feedback (ΔSWcld) and hence different equilibrium climate sensitivities (ECSs), hybrid models are constructed by replacing one or more parameterization schemes for cumulus convection, cloud, and turbulence between them. An ensemble of climate change simulations using a suite of eight models, called a multiphysics ensemble (MPE), is generated. The MPE provides a range of ECS as wide as the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble and reveals a different magnitude and sign of ΔSWcld over the tropics, which is crucial for determining ECS. It is found that no single process controls ΔSWcld, but that the coupling of two processes does. Namely, changing the cloud and turbulence schemes greatly alters the mean and the response of low clouds, whereas replacing the convection and cloud schemes affects low and middle clouds over the convective region. For each of the circulation regimes, ΔSWcld and cloud changes in the MPE have a nonlinear, but systematic, relationship with the mean cloud amount, which can be constrained from satellite estimates. The analysis suggests a positive feedback over the subsidence regime and a near-neutral or weak negative ΔSWcld over the convective regime in these model configurations, which, however, may not be carried into other models.


2020 ◽  
Author(s):  
Chris Brierley ◽  
Anni Zhao ◽  
Sandy Harrison ◽  
Pascale Braconnot ◽  

&lt;p&gt;The mid-Holocene (6,000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Project (CMIP6). Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the northern hemisphere and associated shifts in tropical rainfall. &amp;#160;Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2 K cooler that the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Neither this difference nor the improvement in model complexity and resolution seems to improve the realism of the simulations. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on climate sensitivity and feedback strength.&lt;/p&gt;


2020 ◽  
Author(s):  
Chris M. Brierley ◽  
Anni Zhao ◽  
Sandy P. Harrison ◽  
Pascale Braconnot ◽  
Charles J. R. Williams ◽  
...  

Abstract. The mid-Holocene (6000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Project (CMIP6). Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the northern hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of −0.3 K, which is −0.2 K cooler that the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Neither this difference nor the improvement in model complexity and resolution seems to improve the realism of the simulations. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on climate sensitivity and feedback strength.


Sign in / Sign up

Export Citation Format

Share Document