scholarly journals Effects of different cytokinins on the shoot regeneration from apple leaves of 'Royal Gala' and 'M.26'

2004 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Dobránszky ◽  
I. Hudák ◽  
K. Magyar-Tábori ◽  
E. Jámbor-Benczúr ◽  
Zs. Galli ◽  
...  

The effects of different types of cytokinins on the shoot regeneration from leaf explants of apple scion 'Royal Gala' and apple rootstock 'M.26' were evaluated. Regeneration media contained either thidiazuron, or 6-benzylaminopurine, or meta-topolin, or zeatin, or kinetin, or their N9-ribosides, respectively, in the concentration range 0.5 to 8.0 mg 1-1. Effects of 'these cytokinins were evaluated on the percentage of regeneration (R%) and that of vitrification (V%) and on the number of regenerated shoots per explant (SN). Organogenetic index (0I) calculated from these data was used for the evaluation of efficacy of cytokinins. The course of shoot organogenesis also was followed using stereomicroscope. Types and concentrations of cytokinins applied in the regeneration media influenced each parameter significantly and the regeneration answer was strongly genotype-dependent. The best regeneration (SN: 11.08, 01: 7.5) was achieved in `Royal Gala' by using TDZ in concentration of 0.5 mg 1-1 (2.271,1M). There was a clear relationship between the effect on the regeneration efficacy and the chemical structure of cytokinins considering classical cytokinins, namely N9-ribosides applied in less concentration than non­ribosides have the same or best regeneration effects except for 6-benzylaminopurine riboside. However, similar relationship could not be detected in the case of 'M.26'. SN was the highest (3.22) using 6.5 mg 1-1 (18.2011M) 6-benzylaminopurine riboside or 8.0 mg 1-1 (21.44 µM) meta-topolin riboside (3.18). SN was not significantly lower (3.12) by using 2.0 mg 1-1 (9.08 1M) TDZ, however, OI was about half as big (0.63 compared to 1.29 or 1.74 with 6-benzylaminopurine riboside or meta-topolin riboside, respectively). 'Royal Gala' had higher organogenetic ability, than `M.26': 3.5-fold higher shoot number per explant and more than 4-fold higher organogenetic index was reached with this cultivar than with 'M.26'. Moreover, the similar developmental stage of shoots could be observed 3-5 days earlier than in 'M.26' and if explants of 'Royal Gala' were further cultured with 3 weeks, SN increased from 11.08 to 24.42 on TDZ-containing regeneration medium, which might suggest higher organogenetic ability, too.

HortScience ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 272-278 ◽  
Author(s):  
Qingrong Sun ◽  
Meijuan Sun ◽  
Hongyan Sun ◽  
Richard L. Bell ◽  
Linguang Li ◽  
...  

The organogenesis potential is different among cultivars and must be optimized for individual genotype. Shoot organogenesis capacity from in vitro leaves and root organogenesis capacity of in vitro shoots in six clonal apple rootstock cultivars were compared. The shoot organogenesis capacity was highly genotype dependent. ‘GM256’ was found to be the most responsive genotype for shoot regeneration from leaf explants among the cultivars, showing high regeneration percentage on all tested media. The effects of basal medium composition and cytokinins on shoot regeneration were different depending on rootstock genotype. Optimum regeneration occurred on Murashige and Skoog (MS) basal medium for ‘71-3-150’, and optimum regeneration occurred on Quoirin and Lepoivre (QL) basal medium for ‘60-160’ and ‘ПБ’. Thidiazuron (TDZ) was more effective than 6-benzylaminopurine (BA) for Malus prunifolia (Y), whereas TDZ and BA were not significantly different for the other cultivars. All rootstock cultivars showed high root organogenic capacity. The percentage of rooting reached more than 90% and the mean root number per plantlet ranged from three to five. The optimum rooting medium was different for different rootstock cultivars. Optimum root organogenesis occurred on half-strength QL medium for ‘GM256’ and ‘Y’, and for ‘ПБ’ and ‘JM7’ on one-quarter-strength MS medium.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 445A-445
Author(s):  
X. Cao ◽  
F. Hammerschlag

As part of a program to develop transgenic highbush blueberry (Vaccinium corymbosum L.) cultivars, studies were conducted to determine optimum conditions for high-efficiency shoot regeneration from leaf explants of in vitro propagated, commercially important, tissue culture-recalcitrant `Bluecrop' shoot cultures. The effects of pretreatments, growth regulators, and age of explant source on shoot organogenesis were investigated. A maximum of 98% shoot regeneration and 10 shoots regenerating per leaf explant occurred when explants of 2-week-old shoot cultures were incubated in the dark (for a total of 14 days) on pretreatment medium #1 containing 2.6 μM NAA and 5 μM TDZ for 4 days, next on pretreatment medium #2 containing 2.6 μM NAA and 7 μM zeatin riboside for 3 days, then on regeneration medium containing 1 μM TDZ for 6 weeks, and last on medium without growth regulators for 10 days. No shoot regeneration occurred if explants were incubated without exposure to pretreatments before incubation on regeneration medium. There were no significant differences in percentage of regeneration or the number of shoots regenerating per explant from leaf explants derived from either 1-, 2-, or 3-week-old shoot cultures. Shoot production per explant on 1 μM TDZ was about three times that on either 0.5 μM TDZ or 20 μM zeatin riboside, and nine times that on 5 μM TDZ.


2020 ◽  
Vol 30 (1) ◽  
pp. 131-141
Author(s):  
Hundessa Fufa ◽  
Jiregna Daksa

The present study was undertaken to establish a protocol for in vitro callusing of three Jatropha accessions, namely Metema, Adami Tulu and Shewa Robit from leaf explants. The medium supplemented with combination of 4.44 μM BAP and 4.52 μM 2,4-D resulted in maximum percentage of callus (100%) formed for all accessions. The maximum shoot regeneration (66.67%) from callus with 10.13 number of shoot was obtained from Shewa Robit in MS medum fortified with TDZ (2.27 μM ) and IBA (0.49 μM ). The presence of TDZ in the shoot regeneration medium has greater influence on the induction of adventitious shoot buds, whereas MS supplemented with BAP alone and combination with IBA did not induce shoot regeneration from callus culture. The results obtained in the present study would facilitate the high callus induction and regeneration responses in Jatropha for its improvement using biotechnological tools. Plant Tissue Cult. & Biotech. 30(1): 131-141, 2020 (June)


HortScience ◽  
1994 ◽  
Vol 29 (12) ◽  
pp. 1536-1538 ◽  
Author(s):  
P. Gercheva ◽  
R.H. Zimmerman ◽  
L.D. Owens ◽  
C. Berry ◽  
F.A. Hammerschlag

Shoot regeneration from apple (Malus domestica Borkh.) leaf explants following particle bombardment at various acceleration pressures was studied. Basal leaf segments of micropropagated `Royal Gala' apple were bombarded with 1 μm gold particles, accelerated using helium pressures of 4.5, 6.2, 7.6, 9.3, or 13.8 MPa (650–2000 psi), and cultured on shoot regeneration medium consisting of N6 salts supplemented with 10 μM TDZ for 5, 10, or 20 days in darkness. Bombarded and control explants exhibited 63% to 100% shoot regeneration. With a 5-day dark period, average shoot production per explant ranged from 6.1 to 14; bombardments of 4.5 and 6.2 MPa significantly increased shoot production over the controls. With a 10-day dark period, average shoot production per explant ranged from 9.1 to 22 following bombardment at 9.3 and 6.2 MPa, respectively. Following bombardment at 6.2 MPa, 75% of the explants produced more than 20 regenerants per explant. With a 20-day dark period, average shoot production per explant ranged from 8.9 to 19 following bombardment at 13.8 MPa and following no bombardment, respectively. Shoot production per explant was significantly less than the controls following bombardments ranging from 6.2 to 13.8 MPa. Shoot production was highest per explant with particle bombardment at 6.2 MPa followed by incubation in darkness for 10 days. Chemical name used: thidiazuron (TDZ).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 478a-478
Author(s):  
Sarah S. Crist ◽  
John E. Preece

Shoots were regenerated adventitiously from leaf explants and from callus to determine if there is any effect on somaclonal variation and tissue proliferation of the three rhododendron cultivars, Arctic Pearl, P.J.M. Elite, and Purple Gem. The focus of this paper is regeneration. Leaves from shoot cultures were placed on a pre-conditioning medium for 2 weeks containing 10 μM indolebutyric acid (IBA) and 50 μM isopentenyladenine (2iP) and then transferred to treatment media. The six media tested were 0.1, 1.0, or 10.0 μM thidiazuron (TDZ) or 25.0, 50.0, or 75.0 μM 2iP. All treatment media contained 10 μM IBA. Data were collected on shoot regeneration after 24 weeks. Shoot number increased with increasing levels of TDZ for `P.J.M. Elite', but decreased with increasing concentrations of TDZ for `Arctic Pearl'. Shoot number for `Purple Gem' leaf explants was greatest when there was 1.0 μM TDZ in the medium. In another experiment, leaf explants were placed on the same preconditioning medium for 2 weeks as above and then transferred to three treatment media containing 0.1, 1.0, or 10.0 μM TDZ and 100 μM IBA. Callus was produced on leaf explants after 4 weeks, regardless of cultivar or level of TDZ. After 11 weeks, adventitious shoots regenerated from `Purple Gem' callus regardless of level of TDZ and from `Arctic Pearl' callus when the medium contained 0.1 or 10.0 μM TDZ. After 11 weeks, there were no visible shoots on `P.J.M. Elite' callus.


HortScience ◽  
2018 ◽  
Vol 53 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Mohsen Hesami ◽  
Mohammad Hosein Daneshvar

Ficus religiosa is an important industrial, medicinal, and ornamental plant, so in vitro regeneration is of high paramount in this valuable germplasm. Two efficient protocols were developed for indirect and direct shoot organogenesis through hypocotyl explants. In the first experiment, different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and indole butyric acid (IBA) (0.5, 1.0, and 1.5 mg·L−1) in combination with 6-benzyl amino purine (BAP) (ratio 10:1, respectively) were used for callus formation. Two types of callus were obtained from different concentrations of plant growth regulators (PGRs). Also, 2,4-D produced yellow-brownish and friable callus (Type I), whereas the green and compact callus (Type II) was achieved in IBA. The highest callus fresh weight (2.43 g) was observed in Murashige and Skoog (MS) medium containing 0.5 mg·L−1 2,4-D plus 0.05 mg·L−1 BAP. In the later experiments, various concentrations of thidiazuron (TDZ), 6-furfuryl amino purine (KN), and BAP (0.25, 0.5, 1.0, and 1.5 mg·L−1) in combination with IBA (ratio 10:1, respectively) were applied for shoot regeneration (direct and indirect organogenesis). In shoot regeneration from callus, the highest regeneration frequency (86.66%) and shoot number per callus (4.13) were achieved in MS medium supplemented with 1.5 mg·L−1 BAP plus 0.15 mg·L−1 IBA from type I calli. However, no regeneration was observed in type II calli. In direct shoot regeneration, the highest regeneration frequency (96.66%) and shoot number (6.26) were obtained in the medium mentioned previously. In root induction experiment, different concentrations of naphthalene acetic acid (NAA) and IBA alone or in combination were applied, and MS medium containing 2.0 mg·L−1 IBA along with 0.1 mg·L−1 NAA was the best hormonal balance for root induction. The rooted plantlets’ survival rate was more than 95% in the acclimatization stage. These results demonstrated that the direct regeneration method provides more shoot regeneration frequency and take a less time for shoot organogenesis than the indirect regeneration method. Based on our knowledge, this study is the first report of direct and indirect shoot organogenesis of F. religiosa via hypocotyl from in vitro–grown seedling.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 460F-461
Author(s):  
Xiaoling Cao ◽  
F.A. Hammerschlag

As part of a program to develop transgenic highbush blueberry (Vaccinium corymbosum L.) cultivars, studies were conducted to determine optimum conditions for high efficiency shoot regeneration from leaf explants of in vitro-propagated shoot cultures. The effect of either thidiazuron at 1 or 5 μM, or zeatin riboside at 20 μM, and two lit levels (18 ± 5 or 55 ± 5 μmol·m-2·s-1) on shoot organogenesis were investigated. With the exception of `Bluecrop', which did not regenerate shoots, maximum shoot regeneration of 13, 12.7, 12.6 and 4.6 shoots per explant for cultivars Duke, Georgiagem, Sierra, and Jersey, respectively, occured on regeneration medium with zeatin riboside and under a light intensity of 55 μmol·m-2·s-1. Whereas `Duke' regenerated equally well on regeneration medium with either zeatin riboside or 5 μM thidiazuron, regeneration frequencies for `Georgiagem' and `Sierra' were significantly higher on zeatin riboside. A light intensity of 55 μmol·m-2·s-1 significantly increased regeneration of cultivars Duke, Jersey, and Sierra on zeatin riboside, but inhibited regeneration of Duke on 5 μM thidazuron.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Soo Cheon Chae ◽  
Haeng Hoon Kim ◽  
Sang Un Park

Shoot organogenesis and plant regeneration inSinningia speciosawere improved using ethylene inhibitors. The leaf explants were cultured on initial shoot regeneration media (MS media with BAP at 2 mg/L + NAA at 0.1 mg/L) supplemented with different concentrations of aminoethoxyvinylglycine (AVG), cobalt chloride (CoCl2), and silver thiosulphate (STS). The addition of AVG, CoCl2, and STS significantly improved the regeneration frequency giving higher shoots per explant and longer shoot length. The highest shoot growth was found when STS at 5 mg/L was incorporated with generation medium, performing highest regeneration frequency with highest number of shoots. This treatment (STS at 5 mg/L) produced 40% more shoots per explant compared to control followed by STS at 10 mg/L with increasing 37% more shoots compared to control. In the cases of AVG and CoCl2the highest shoot number per explant was found at 1 mg/L. Treated with AVG and CoCl2at 1 mg/L increased shoot number by 16 and 12%, respectively, compared to control. Ethylene inhibitors could be used as a possible micropropagation and plant transformation protocol inS. speciosafor plant regenerations.


2017 ◽  
Vol 8 ◽  
Author(s):  
D.S. Vijaya Chitra ◽  
Bhaskarrao Chinthapalli ◽  
G. Padmaja

<p><strong>A comparison of protein profiles of leaves during different stages of shoot and callus induction showed similarities as well as differences in the expression of proteins.  A protein of 39 kDa was expressed in low levels in leaf explants and increased in intensity during induction of shoot organogenesis in both the cultivars. Analysis of protein patterns during organogenesis and callus proliferation from leaves by two dimensional gel analysis revealed the separation of 39 kDa protein into four spots during organogenesis with pI values ranging from 4.2-5.8.  However, the isoforms of 39 kDa protein with pI values of 4.2 and 5.8 were highly expressed in callus of M-5 cultivar in contrast to S-36 cultivar where only one isoform with pI value of 4.2 was detectable. The analysis of protein synthesis in different stages of development in the cultures may acts as markers to differentiate the group of specific isoforms.</strong></p>


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 327-328
Author(s):  
Ruth S. Kobayashi ◽  
John C. Bouwkamp ◽  
Stephen L. Sinden

Leaf callus of Ipomoea cordatotriloba was initiated by culturing explants on Linsmaier and Skoog medium containing 3 g yeast extract/liter, 18.9 μm ABA, 2.3 μm 2,4-D, and 0.15 m sucrose. Calluses were transferred to Murashige and Skoog media containing 17.8 μm BA and 0, 1, 10, or 100 μm PCIB. The number of shoots from calluses grown on medium containing 10 μm PCIB increased significantly, and the percentage of calluses exhibiting shoot regeneration almost doubled compared to calluses grown on regeneration medium without PCIB. Protoplasts isolated from stem and petiole tissues of in vitro-grown plants were cultured in Kao and Michayluk 8p medium to the callus stage. Calluses (4-6 mm) were transferred to the callus induction and regeneration media used to regenerate leaf-explant callus. Of the protoplast-derived calluses cultured on media containing 10 or 100 μm PCIB, ≈13% and 18%, respectively, regenerated shoots after 2 months; none regenerated on the medium without PCIB. Chemical names used: abscisic acid (ABA); 2,4-dichlorophenoxyacetic acid (2,4-D); N6-benzyladenine (BA); α -p-chlorophenoxyisobutyric acid (PCIB).


Sign in / Sign up

Export Citation Format

Share Document