scholarly journals An Investigation Into The Synergistic Relationship Between Lactoferrin And Azithromycin With Particular Reference To Periodontopathic Bacteria

2017 ◽  
Vol 16 (2) ◽  
Author(s):  
Juzaily Husain

Introduction: The development of treatment strategies for periodontitis that maximise the effectiveness of antibiotics is highly desirable. Azithromycin is proving to be an effective antibiotic for treatment of refractory periodontitis which works by binding to the outer membrane of Gramnegative bacteria and subsequently inhibits protein synthesis. Lactoferrin is a membrane-active host antimicrobial protein and so the objective of this study was to determine whether the effect of azithromycin (AZM) against example periodontopathogens (Porphyromonas gingivalis and Tannerella forsythia) could be potentiated by lactoferrin. Materials and Methods: Two strains of P. gingivalis and T. forsythia were exposed to lactoferrin (LF; up to 10 mg/ml) and AZM (up to 5 g/ml) for 0 -72 h. The MICs for AZM were established using E-Test strips and by agar diffusion. Susceptibility to LF and LF + AZM was evaluated using diffusion assays, with and without iron depletion. Results: The range of MIC values of AZM for P. gingivalis strains and T. forsythia was 0.16 - 0.63 µg/ml and 0.50 - 0.63 µg/ml, respectively. However, no inhibition was observed with iron saturated lactoferrin at any concentration or under iron depletion conditions nor was any effect observed on the AZM MIC by its presence. Conclusion(s): P. gingivalis and T. forsythia were inhibited by AZM but were not affected by LF and there was no synergism between AZM and LF.

2008 ◽  
Vol 76 (7) ◽  
pp. 2958-2965 ◽  
Author(s):  
Y. Koizumi ◽  
T. Kurita-Ochiai ◽  
S. Oguchi ◽  
M. Yamamoto

ABSTRACT Porphyromonas gingivalis has been shown to accelerate atherosclerotic lesion development in hyperlipidemic animals. We assessed the potential of a nasal vaccine against P. gingivalis infection for the prevention of atherosclerosis. Apolipoprotein E-deficient spontaneously hyperlipidemic (Apoeshl) mice were nasally immunized with the 40-kDa outer membrane protein (OMP) of P. gingivalis plus cholera toxin (CT) as adjuvant and then challenged intravenously with P. gingivalis strain 381. The animals were euthanized 11 or 14 weeks later. Atheromatous lesions in the proximal aorta of each animal were analyzed histomorphometrically, and the serum concentrations of 40-kDa OMP-specific antibodies and cytokines were determined. The areas of the aortic sinus that were covered with atherosclerotic plaque and the serum levels of inflammatory cytokines and chemokines were increased in Apoeshl mice challenged with P. gingivalis compared to nonchallenged mice. In comparison, nasal immunization with 40-kDa OMP plus CT significantly reduced atherosclerotic plaque accumulation in the aortic sinus and lowered the serum levels of cytokines and chemokines compared to nonimmunized animals. Nasal immunization also induced 40-kDa OMP-specific serum immunoglobulin G (IgG) and saliva IgA antibody responses. These findings suggest that systemic infection with P. gingivalis accelerates atherosclerosis in Apoeshl mice, and 40-kDa OMP plus CT may be an effective nasal vaccine for the reduction of atherosclerosis accelerated by P. gingivalis in the hyperlipidemic mouse model.


1979 ◽  
Vol 35 (1) ◽  
pp. 253-266
Author(s):  
S.P. Gibbs

In 8 classes of algae, namely the Cryptophyceae, Raphidophyceae, Haptophyceae, Chrysophyceae, Bacillariophyceae, Xanthophyceae, Eustigmatophyceae and Phaeophyceae, the chloroplasts, in addition to being surrounded by a double-membraned chloroplast envelope, are also enclosed by a cisterna of endoplasmic reticulum called the chloroplast ER. Often this ER cisterna is continuous with the outher membrane of the nuclear envelope in such a manner that the nuclear envelope forms a part of the ER sac enclosing the chloroplast. In all these classes of algae except the Cryptophyceae, a regular network of tubules and vesicles, named the periplastidal reticulum, is present at a specific location between the chloroplast envelope and the chloroplast ER. In the Cryptophyceae, scattered vesicles are found between the chloroplast envelope and the chloroplast ER. Ribosomes which have been shown to be arranged to polysomes are found on the outer membrane of the chloroplast ER. It is proposed that nuclear-coded proteins which are destined for the chloroplast are synthesized on these polysomes, passing during synthesis into the lumen of the ER cisterna. Vesicles containing these proteins then pinch off the chloroplast ER and form the periplastidal reticulum. Vesicles containing these proteins then pinch off the chloroplast ER and form the periplastidal reticulum. Vesicles then fuse with the outer membrane of the chloroplast envelope thereby delivering their contents to the lumen of the chloroplast envelope. Proteins then cross the inner membrane of the chloroplast envelope in an as yet unknown manner. Experimental evidence for this hypothesis comes from studies on Ochromonas danica using chloramphenicol and spectinomycin, which inhibit protein synthesis on plastid ribosomes, and cycloheximide, which inhibits protein synthesis on cytoplasmic ribosomes. In cells of Ochromonas exposed to chloramphenicol or spectinomycin, the periplastidal reticulum proliferates markedly becoming several layers thick. Presumably this build up of periplastidal reticulum occurs because the transport of cytoplasmically synthesized plastid proteins is slowed down when protein synthesis in the chloroplast is inhibited. Conversely, when cells of Ochromonas are treated with cycloheximide, there is a reduction in the amount of periplastidal reticulum presumably because there are no cytoplasmically synthesized proteins to be transported into the chloroplast.


2018 ◽  
Vol 2018 ◽  
pp. 1-2
Author(s):  
Jorday Hernández-Aguas ◽  
José Luis Montiel-Hernández ◽  
Myriam A. De La Garza-Ramos ◽  
Rosa Velia Ruiz-Ramos ◽  
Erandi Escamilla García ◽  
...  

2007 ◽  
Vol 52 (7) ◽  
pp. 697-704 ◽  
Author(s):  
Susumu Hamajima ◽  
Mitsuhiro Maruyama ◽  
Takahiro Hijiya ◽  
Hajime Hatta ◽  
Yoshimitsu Abiko

2004 ◽  
Vol 2 (1) ◽  
pp. 54-56 ◽  
Author(s):  
Yoshimitsu Abiko ◽  
Koichi Hiratsuka ◽  
Michiko Kiyama-Kishikawa ◽  
Mitsuo Hayakawa ◽  
Hiroaki Tagawa ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 20180064 ◽  
Author(s):  
Susanne Bloch ◽  
Markus B. Tomek ◽  
Valentin Friedrich ◽  
Paul Messner ◽  
Christina Schäffer

Periodontitis is a polymicrobial, biofilm-caused, inflammatory disease affecting the tooth-supporting tissues. It is not only the leading cause of tooth loss worldwide, but can also impact systemic health. The development of effective treatment strategies is hampered by the complicated disease pathogenesis which is best described by a polymicrobial synergy and dysbiosis model. This model classifies the Gram-negative anaerobe Tannerella forsythia as a periodontal pathogen, making it a prime candidate for interference with the disease. Tannerella forsythia employs a protein O -glycosylation system that enables high-density display of nonulosonic acids via the bacterium's two-dimensional crystalline cell surface layer. Nonulosonic acids are sialic acid-like sugars which are well known for their pivotal biological roles. This review summarizes the current knowledge of T. forsythia' s unique cell envelope with a focus on composition, biosynthesis and functional implications of the cell surface O -glycan. We have obtained evidence that glycobiology affects the bacterium's immunogenicity and capability to establish itself in the polymicrobial oral biofilm. Analysis of the genomes of different T. forsythia isolates revealed that complex protein O -glycosylation involving nonulosonic acids is a hallmark of pathogenic T. forsythia strains and, thus, constitutes a valuable target for the design of novel anti-infective strategies to combat periodontitis.


Sign in / Sign up

Export Citation Format

Share Document