scholarly journals Effect of Cyhexatin (Plictran) on Growth, Conidial Germination And Sporulation of Cercospora arachidicola1

1981 ◽  
Vol 8 (1) ◽  
pp. 11-12 ◽  
Author(s):  
H. A. Melouk

Abstract Growth of Cercospora arachidicola Hori, the causal agent of early leaf spot disease on peanuts, was completely inhibited on Czapek-Dox broth medium amended with the acaricide cyhexatin (Plictran) at ≤ 73.5 μg/ml; however, at 14.7 μg/ml traces of growth occurred after 6 weeks of incubation at 27±2C and continuous fluorescent light (800 lux). Aqueous preparations of cyhexation at ≤ 147.0 μg/ml completely inhibited the germination of conidia of C. arachidicola. At a concentration of cyhexatin ≤ 73.5 and 14.7 μg/ml, less than two percent of the conidia germinated as compared with more than 95 percent germination in distilled water. Misting of aqueous preparations of cyhexatin at ≤ 147.0 μg/ml on the adaxial or both surfaces of peanut leaflets with mature leafspot lesions was very effective in reducing the sporulating potential of C. arachidicola.

1999 ◽  
Vol 26 (1) ◽  
pp. 4-8 ◽  
Author(s):  
J. A. Baysinger ◽  
H. A. Melouk ◽  
D. S. Murray

Abstract Early leaf spot is a common disease of peanut caused by the fungus Cercospora arachidicola Hori. Experiments were conducted to evaluate the effect of postemergence herbicides on the conidial germination of C. arachidicola and on the incidence of early leaf spot disease in peanut (Arachis hypogaea L.) in a greenhouse. Conidial germination was enhanced (≥ 100%) at concentrations of 1, 100, and 1000 mg/L of 2,4-DB compared with the untreated control. Lactofen reduced conidial germination by 42% compared with the control at concentrations as low as 100 mg/L and completely inhibited germination at concentrations ≥ 5000 mg/L. A concentration of 10,000 mg/L acifluorfen and 2,4-DB completely inhibited conidial germination. Acifluorfen, acifluorfen plus 2,4-DB, and lactofen decreased the sporulation of early leaf spot lesions. Lactofen reduced leaf spot incidence 12% and decreased sporulation of lesions 22% compared with the control. None of the herbicides increased the incidence of early leaf spot on peanut plants or the number of early leaf spot lesions per leaflet when compared with plants that received no herbicide.


Author(s):  
D. W. Minter

Abstract A description is provided for Lophomerum ponticum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Rhododendron ponticum. DISEASE: Leaf spot of rhododendron. In general Lophomerum ponticum appears to be saprophytic. Its ascocarps are usually not produced until the leaves have senesced, become detached and fallen to the litter. Occasionally, however, ascocarps can be found on browned regions of otherwise green leaves, and it seems possible, therefore, that the species is facultatively parasitic. It is important to distinguish this species from Lophodermium vagulum (CMI Descriptions 789) which is the causal agent of a leaf spot disease of chinese rhododendrons, but which does not occur on R. ponticum. GEOGRAPHICAL DISTRIBUTION: Europe (Great Britain), probably much more widespread. TRANSMISSION: By air-borne ascospores in wet or humid weather.


2009 ◽  
Vol 124 (4) ◽  
pp. 577-583 ◽  
Author(s):  
Barbara Meisel ◽  
Jeanne Korsman ◽  
Frederik J. Kloppers ◽  
Dave K. Berger

2011 ◽  
Vol 40 (3) ◽  
pp. 246-259 ◽  
Author(s):  
Shan-Hai Lin ◽  
Si-Liang Huang ◽  
Qi-Qin Li ◽  
Chun-Jin Hu ◽  
Gang Fu ◽  
...  

2010 ◽  
Vol 11 (1) ◽  
pp. 51 ◽  
Author(s):  
Dean A. Glawe ◽  
Tess Barlow ◽  
Steven T. Koike

In the summer of 2009, a leaf spot disease occurred on 100% of Gaillardia × grandiflora cv. Goblin in a commercial nursery in coastal Monterey Co., CA. Nearly all of the affected plants were unsalable. The causal agent was determined to be Entyloma gaillardianum based on morphological features, host, and ITS region. This species has not been reported previously from this host in North America. Accepted for publication 16 March 2010. Published 28 April 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Walftor Dumin ◽  
Mi-Jeong Park ◽  
You-Kyoung Han ◽  
Yeong-Seok Bae ◽  
Jong-Han Park ◽  
...  

Garlic (Allium sativum L. cv.namdo) is one of the most popular vegetables grown in Korea due to its high demand from the food industry. However, garlic is susceptible to a wide range of pest infestations and diseases that cause a significant decrease in garlic production, locally and globally (Schwartz and Mohan 2008). In early 2019, the occurrence of leaf blight disease was found spreading in garlic cultivation areas around Jeonnam (34.9671107, 126.4531825) province, Korea. Disease occurrence was estimated to affect 20% of the garlic plants and resulted in up to a 3-5% decrease in its total production. At the early stage of infection, disease symptoms were manifested as small, white-greyish spots with the occurrence of apical necrosis on garlic leaves. This necrosis was observed to enlarge, producing a water-soaked lesion before turning into a black-violet due to the formation of conidia. As the disease progressed, the infected leaves wilted, and the whole garlic plants eventually died. To identify the causal agent, symptomatic tissues (brown dried water-soak lesion) were excised, surface sterilized with 1% NaOCl and placed on the Potato Dextrose Agar (PDA) followed by incubation at 25°C in the dark for 5 days. Among ten fungal isolates obtained, four were selected for further analyses. On PDA, fungal colonies were initially greyish white in colour but gradually turned to yellowish-brown after 15 days due to the formation of yellow pigments. Conidia were muriform, brown in colour, oblong (almost round) with an average size of 18 – 22 × 16 – 20 μm (n = 50) and possessed 6 - 8 transverse septa. Fungal mycelia were branched, septate, and with smooth-walled hyphae. Morphological characteristics described above were consistent with the morphology of Stemphylium eturmiunum as reported by Simmons (Simmons, 2001). For molecular identification, molecular markers i.e. internal transcribed spacer (ITS) and calmodulin (cmdA) genes from the selected isolates were amplified and sequenced (White et al., 1990; Carbone and Kohn 1999). Alignment analysis shows that ITS and cmdA genes sequence is 100% identical among the four selected isolates. Therefore, representative isolate i.e. NIHHS 19-142 (KCTC56750) was selected for further analysis. BLASTN analysis showed that ITS (MW800165) and cmdA (LC601938) sequences of the representative isolates were 100% identical (523/523 bp and 410/410 bp) to the reference genes in Stemphylium eturmiunum isolated from Allium sativum in India (KU850545, KU850835) respectively (Woudenberg et al. 2017). Phylogenetic analysis of the concatenated sequence of ITS and cmdA genes confirmed NIHHS 19-142 isolates is Stemphylium eturmiunum. Pathogenicity test was performed using fungal isolate representative, NIHHS 19-142. Conidia suspension (1 × 106 conidia/µL) of the fungal isolate was inoculated on intact garlic leaves (two leaves from ten different individual plants were inoculated) and bulbs (ten bulbs were used) respectively. Inoculation on intact leaves was performed at NIHHS trial farm whereas inoculated bulbs were kept in the closed container to maintain humidity above 90% and incubated in the incubator chamber at 25°C. Result show that the formation of water-soaked symptoms at the inoculated site was observed at 14 dpi on intact leaves whereas 11 dpi on bulbs. As a control, conidia suspension was replaced with sterile water and the result shows no symptoms were observed on the control leaves and bulbs respectively. Re-identification of fungal colonies from symptomatic leaf and bulb was attempted. Result showed that the morphological characteristics and molecular marker sequences of the three colonies selected were identical to the original isolates thus fulfilled Koch’s postulates. Early identification of Stemphylium eturmiunum as a causal agent to leaf spot disease is crucial information to employ effective disease management strategies or agrochemical applications to control disease outbreaks in the field. Although Stemphylium eturmiunum has been reported to cause leaf spot of garlic disease in China, France and India (Woudenberg et al. 2017), to our knowledge, this is the first report of causing leaf spot disease on garlic in Korea.


2020 ◽  
Vol 8 (1) ◽  
pp. 12-20
Author(s):  
Mazen Salman

The olive leaf spot disease caused by the fungus Spilocaea oleagina (Cast.) Hughes (syn. Cycloconium oleagina) is one of the most destructive diseases on olive trees causing losses that may reach 20% of the yield. The disease is controlled by the application of chemical fungicides which is not always feasible in providing proper protection against the pathogen. In this work we report the efficacy of Pseudomonas fluorescenc isolate ORS3 and Bascillus atrophaeus isolate Bat in controlling the disease under field conditions. An Olive field in, Tulkarm governorate, Palestine was selected. The olive trees were 5-10 years old and were highly infected with the olive leaf spot. Trees were sprayed with bacteria formulated in oil. Control trees were sprayed with water. For evaluation of bacterial efficacy against the disease, olive leaves were collected before and after application of the bacteria. Germination of conidia latent infection and severity were determined. In addition to that, bacterial viability was assessed. Results of the work revealed that the bacteria were able to inhibit conidial germination of the fungus. The percent of reduction in conidial germination (85.8 and 70.2%) in the presence of P. fluorescenc isolate ORS and B. atrophaeus isolate Bat, respectively was significantly lower than that in the control or in leaves sprayed with 10% oil (69.1 and 56.1%, respectively). After two weeks of spraying, the percent of latent infectoin (figure 4) was significantly (p<0.05) lower on leaves sprayed with P. fluorescenc isolate ORS3 and B. atrophaeus isolate BAT (5.1 and 3.8% latent infection, respectively). However, bacterial shelf life on the surface of olive leaves was reduced after three days of spraying (i.e no bacteria were re-isolated). The results indicated that the bacteria can be used for control of the leaf spot disease. Further studies are required to evaluate the efficacy of the bacteria under different environmental conditions.


2012 ◽  
Vol 2 (6) ◽  
pp. 1-4
Author(s):  
Mbadianya J. I Mbadianya J. I ◽  
◽  
Echezona B. C Echezona B. C ◽  
Ugwuoke K. I Ugwuoke K. I ◽  
Wokocha R. C Wokocha R. C

Sign in / Sign up

Export Citation Format

Share Document