scholarly journals LINEAR AND NONLINEAR INSTABILITY OF FLOW IN CHANNEL OCCUPIED POROUS MEDIA

2017 ◽  
Vol 39 (3) ◽  
pp. 40-46
Author(s):  
A.A. Avramenko ◽  
N.P. Dmitrenko ◽  
Y.Y. Kovetskaya

The paper investigates linear and nonlinear hydrodynamic instability of flow in channel ocuped porous medium. The effects of linear instability are considered using the method of linear perturbations. The nonlinear instability of the flow is considered using the renormalized expression for the coefficient of the kinematic viscosity.

2021 ◽  
Author(s):  
Florinda Capone ◽  
Roberta De Luca ◽  
Giuliana Massa

AbstractThermal convection in a horizontally isotropic bi-disperse porous medium (BDPM) uniformly heated from below is analysed. The combined effects of uniform vertical rotation and Brinkman law on the stability of the steady state of the momentum equations in a BDPM are investigated. Linear and nonlinear stability analysis of the conduction solution is performed, and the coincidence between linear instability and nonlinear stability thresholds in the $$L^2$$ L 2 -norm is obtained.


1957 ◽  
Vol 10 (1) ◽  
pp. 43 ◽  
Author(s):  
JR Philip

The transition from rest to steady motion on the sudden application of a potential gradient to the fluid contained in a saturated porous medium is investigated. An approximate analysis gives the result that the time of the effective establishment of the steady motion is proportional to the permeability and inversely proportional to the kinematic viscosity. Two exact solutions (one of them new) for simple cases suggest that the approximate analysis is remarkably accurate. An analogy between this problem and one in heat conduction makes the relevant results in that field immediately applicable here.


Author(s):  
Alaa Waleed

This article deals with the influence of porous media on Helical flows of Generalized Oldroyd-B between two infinite coaxial circular cylinders .The fractional derivative are modeled for this problem and studied by using finite Hankel and Laplace transforms .The velocity fields founded by using the fundamentals of the series form  in terms of  Mittag-leffler equation . The research focused on the parameters like (permeability parameter  z ,fractional parameters(𝛼 , 𝛽) , relaxation 𝜆1 , retardation 𝜆2 , kinematic viscosity v , magnetic parameter M and time t) which effected on the velocity field u and w. MATHEMATICA package used to study and analyze the above  variables by drawing many graphs .


2015 ◽  
Vol 70 (5) ◽  
pp. 383-394 ◽  
Author(s):  
Akil J. Harfash ◽  
Ahmed K. Alshara

AbstractThe linear and nonlinear stability analysis of the motionless state (conduction solution) and of a vertical throughflow in an anisotropic porous medium are tested. In particular, the effect of a nonhomogeneous porosity and a constant anisotropic thermal diffusivity have been taken into account. Then, the accuracy of the linear instability thresholds are tested using a three dimensional simulation. It is shown that the strong stabilising effect of gravity field. Moreover, the results support the assertion that the linear theory, in general, is accurate in predicting the onset of convective motion, and thus, regions of stability.


2014 ◽  
Vol 6 (1) ◽  
pp. 1024-1031
Author(s):  
R R Yadav ◽  
Gulrana Gulrana ◽  
Dilip Kumar Jaiswal

The present paper has been focused mainly towards understanding of the various parameters affecting the transport of conservative solutes in horizontally semi-infinite porous media. A model is presented for simulating one-dimensional transport of solute considering the porous medium to be homogeneous, isotropic and adsorbing nature under the influence of periodic seepage velocity. Initially the porous domain is not solute free. The solute is initially introduced from a sinusoidal point source. The transport equation is solved analytically by using Laplace Transformation Technique. Alternate as an illustration; solutions for the present problem are illustrated by numerical examples and graphs.


Author(s):  
Swayamdipta Bhaduri ◽  
Pankaj Sahu ◽  
Siddhartha Das ◽  
Aloke Kumar ◽  
Sushanta K. Mitra

The phenomenon of capillary imbibition through porous media is important both due to its applications in several disciplines as well as the involved fundamental flow physics in micro-nanoscales. In the present study, where a simple paper strip plays the role of a porous medium, we observe an extremely interesting and non-intuitive wicking or imbibition dynamics, through which we can separate water and dye particles by allowing the paper strip to come in contact with a dye solution. This result is extremely significant in the context of understanding paper-based microfluidics, and the manner in which the fundamental understanding of the capillary imbibition phenomenon in a porous medium can be used to devise a paper-based microfluidic separator.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 266
Author(s):  
Péter German ◽  
Mauricio E. Tano ◽  
Carlo Fiorina ◽  
Jean C. Ragusa

This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formulation of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with heat transfer. Instead of resolving the exact flow configuration with high fidelity, the porous medium formulation solves a homogenized flow in which the fluid-structure interactions are captured via volumetric flow resistances with nonlinear, semi-empirical friction correlations. A supremizer approach is implemented for the stabilization of the reduced fluid dynamics equations. The reduced nonlinear flow resistances are treated using the Discrete Empirical Interpolation Method (DEIM), while the turbulent eddy viscosity and diffusivity are approximated by adopting a Radial Basis Function (RBF) interpolation-based approach. The proposed method is tested using a 2D numerical model of the Molten Salt Fast Reactor (MSFR), which involves the simulation of both clean and porous medium regions in the same domain. For the steady-state example, five model parameters are considered to be uncertain: the magnitude of the pumping force, the external coolant temperature, the heat transfer coefficient, the thermal expansion coefficient, and the Prandtl number. For transient scenarios, on the other hand, the coastdown-time of the pump is the only uncertain parameter. The results indicate that the POD-RB-ROMs are suitable for the reduction of similar problems. The relative L2 errors are below 3.34% for every field of interest for all cases analyzed, while the speedup factors vary between 54 (transient) and 40,000 (steady-state).


2015 ◽  
Vol 1101 ◽  
pp. 471-479
Author(s):  
Georges Freiha ◽  
Hiba Othman ◽  
Michel Owayjan

The study of signals propagation inside porous media is an important field especially in the biomedical research related to compact bones. The purpose of this paper is to determine a mathematical formulation of the global coefficients of transmission and reflection of nondestructive ultrasonic waves in any bi-phase porous medium. Local coefficients of transmission and reflection on the interface of the porous medium will be determined based on a study of boundary conditions. The behavior of different waves inside the porous medium will be developed so that we can derive a new formulation of global coefficients that takes interior phenomena into consideration. Results are found independently of the geometrical and physical characteristics of the medium. Note that this study is based on normal incident ultrasonic wave propagation.


1972 ◽  
Vol 12 (02) ◽  
pp. 89-95 ◽  
Author(s):  
Ahmad H.M. Totonji ◽  
S.M. Farouq Ali

Abstract The chief objective of the study was to exercise control on the system phase behavior through the use of mixtures of two alcohols exhibiting opposite phase behavior characteristics in the alcohol-hydrocarbon-water system involved. Such systems were employed in displacements in porous media to ascertain their effectiveness. Introduction Displacement of oil and water in a porous medium by a mutually miscible alcohol or other solvent has been the subject of numerous investigations. This process, in spite of its limited scope as an oil recovery method, has certain mechanistic features that are of value in gaining an understanding of some of the newer recovery techniques (e.g., the Maraflood* process). The works of Gatlin and Slobod, proposing piston-like displacement of oil and water by a miscible alcohol; of Taber et al., describing the displacement mechanism in terms of the ternary phase behavior involved; and of Holm and Csaszar, defining displacement mechanism in terms of phase velocity ratio, are major contributions in this area. In a later work, Taber and Meyer suggested the addition of small amounts of oil and water (as the case may be) to the alcohol used for displacement, since this helped to obtain piston-like displacements with systems that are usually characterized by the efficient displacement of either oil or water. APPARATUS, EXPERIMENTAL PROCEDURE, AND SIMULATOR PROCEDURE, AND SIMULATOR The procedure employed for determining the equilibrium phase behavior of ternary systems involved the titration of a hydrocarbon-water (or brine) mixture by the particular solvent (pure alcohol, or alcohol mixture) for the determination of the binodal curve, and the analysis by refractive index measurement of ternary mixtures having known compositions for the determination of the tie lines. Since the procedure is valid for strictly ternary systems, its use in this case where essentially quaternary systems are involved would yield the total alcohol content rather than the correct proportion of each alcohol. The ternary diagrams presented should be viewed with this limitation in mind. presented should be viewed with this limitation in mind. The apparatus used for experimental runs in porous media consisted of a positive displacement Ruska pump and a core encased in a steel pipe. Suitable sampling apparatus and auxiliary equipment were employed. Most runs consisted of injecting a slug of the particular solvent into a core initially containing a residual oil (waterflood) or irreducible water saturation, at a constant rate, and then following the slug by water or brine. The effluent samples collected were analyzed for the hydrocarbon, water and alcohol in order to plot the production histories. Complete experimental details and fluid production histories. Complete experimental details and fluid properties are given in Ref. 6. Table 1 lists the properties properties are given in Ref. 6. Table 1 lists the properties of the porous media used. Computer simulations of some of the experimental runs, as well as exploratory simulations, were carried out using the method earlier reported. The method basically consists in the representation of a porous medium by a certain number of cells containing immobile oil (or oleic) and water (or aqueous) fractions into which alcohol is injected in a stepwise manner allowing for phase changes. SPEJ P. 89


Sign in / Sign up

Export Citation Format

Share Document