scholarly journals State of Art: Cell Penetration and Cell-Penetrating Peptides and Proteins

2021 ◽  
Vol 4 (2) ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Jihui Tang ◽  
Jie Ning ◽  
Xiaoyan Liu ◽  
Baoming Wu ◽  
Rongfeng Hu

<P>Introduction: Machine Learning is a useful tool for the prediction of cell-penetration compounds as drug candidates. </P><P> Materials and Methods: In this study, we developed a novel method for predicting Cell-Penetrating Peptides (CPPs) membrane penetrating capability. For this, we used orthogonal encoding to encode amino acid and each amino acid position as one variable. Then a software of IBM spss modeler and a dataset including 533 CPPs, were used for model screening. </P><P> Results: The results indicated that the machine learning model of Support Vector Machine (SVM) was suitable for predicting membrane penetrating capability. For improvement, the three CPPs with the most longer lengths were used to predict CPPs. The penetration capability can be predicted with an accuracy of close to 95%. </P><P> Conclusion: All the results indicated that by using amino acid position as a variable can be a perspective method for predicting CPPs membrane penetrating capability.</P>


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4298-4298
Author(s):  
Jose A. Gomez ◽  
Tomoyuki Yoshida ◽  
Minh Lam ◽  
Clark W. Distelhorst ◽  
Shigemi Matsuyama

Abstract Plasma membrane is known to have a high degree of selectivity for molecular trafficking, and it does not allow the penetration of peptides larger than 3 amino acids. Previously known exceptions of large peptides that penetrate the plasma membrane are the Arginine rich peptides such as human immunodeficiency virus (HIV)-tat peptides. However, the mechanism of cell penetration of these peptides is largely unknown. Bax Inhibiting Peptides (BIP) are penta-peptides derived from the Bax binding domain of Ku70. At present, three types of BIP have been developed. Those are: VPMLK, VPTLK, and VPALR. All of these three BIPs directly bind Bax and inhibit Bax-mediated cell death in cultured cells as well as in animal study. Surprisingly, BIPs are cell permeable and autonomously enter the cytoplasm of the cells within 1 hr. Therefore BIPs are recognized as new members of cell penetration peptides. In this study, we investigated the mechanism of cell penetration of BIPs. DAMI cells (a human megakaryocyte cell line) and HeLa cells were used to investigate the detailed mechanism of cell penetration of BIPs. To detect the cell entry of BIPs, fluorescent dyes (fluorescein or tetramethylrodhamine) were conjugated to the N-terminus of BIPs and the cytoplasmic localization of BIPs was confirmed by confocal microscopy. Cell Penetration activities of BIPs were detected at 1 uM concentration in the culture medium. The significant accumulation of BIPs in the cytoplasm were detected within 1 hour of incubation both at 4 °C and 37 °C, suggesting that ATP-independent mechanism of cell penetration of BIP exists. However, cellular uptake of BIPs reaches plateau at 100 uM at 4 °C, whereas it increases in a dose dependent manner up to 1 mM at 37 °C without any sign of cytotoxicity. These results suggest that there are at least two mechanisms contributing to the cell penetration of BIPs that are, “ATP-independent (4 °C)” and “ATP-dependent (37 °C)” mechanisms. In addition to BIPs, we generated a series of mutated BIPs that do not bind Bax but retain cell-penetrating activities. We performed competition assay using fluorescence dye-labeled and non-labeled BIP (and the mutant BIPs), and the preliminary results suggest that there is a specific receptor for each peptide for its delivery into the cells. Our data also indicates that BIPs can deliver a cargo molecule (e.g. fluorescent dye) with at least the same molecular weight. Unlike other cell penetrating peptides, BIP has minimum toxicity due to its nature to inhibit Bax-mediated cell death. Along with the new data showing that BIP protects cells from pathological damages in cell culture and animal model, we will discuss the potential application of BIPs as a new type of drug delivery tool.


2014 ◽  
Vol 50 (55) ◽  
pp. 7254-7257 ◽  
Author(s):  
Gabriela A. Eggimann ◽  
Emilyne Blattes ◽  
Stefanie Buschor ◽  
Rasomoy Biswas ◽  
Stephan M. Kammer ◽  
...  

Redesigning linear cell penetrating peptides (CPPs) into a multi-branched topology with short dipeptide branches gave cell penetrating peptide dendrimers (CPPDs) with higher cell penetration, lower toxicity and hemolysis and higher serum stability than linear CPPs.


2008 ◽  
Vol 19 (4) ◽  
pp. 876-881 ◽  
Author(s):  
Jessica L. Cohen ◽  
Adah Almutairi ◽  
Joel A. Cohen ◽  
Matt Bernstein ◽  
Steven L. Brody ◽  
...  

2018 ◽  
Vol 54 (50) ◽  
pp. 6919-6922 ◽  
Author(s):  
Marta Pazo ◽  
Marisa Juanes ◽  
Irene Lostalé-Seijo ◽  
Javier Montenegro

Even for short peptides that are enriched in basic amino acids, the large chemical space that can be spanned by combinations of natural amino acids hinders the rational design of cell penetrating peptides.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Julie Gaston ◽  
Nicolas Maestrali ◽  
Guilhem Lalle ◽  
Marie Gagnaire ◽  
Alessandro Masiero ◽  
...  

AbstractBecause of their favorable properties as macromolecular drugs, antibodies are a very successful therapeutic modality for interfering with disease-relevant targets in the extracellular space or at the cell membrane. However, a large number of diseases involve cytosolic targets and designing antibodies able to efficiently reach intracellular compartments would expand the antibody-tractable conditions. Here, we genetically fused cell penetrating peptides (CPPs) at various positions to an antibody targeting cancer cells, evaluated the developability features of the resulting antibody-peptide fusions and the ability of selected constructs to reach the cytosol. We first determined positions in the IgG structure that were permissive to CPP incorporation without destabilizing the antibody. Fusing CPPs to the C-terminus of the light chain and either before or after the hinge had the least effect on antibody developability features. These constructs were further evaluated for cell penetration efficiency. Two out of five tested CPPs significantly enhanced antibody penetration into the cytosol, in particular when fused before or after the hinge. Finally, we demonstrate that specific antibody binding to the cell surface target is necessary for efficient cell penetration of the CPP-antibody fusions. This study provides a solid basis for further exploration of therapeutic antibodies for intracellular targets.


2006 ◽  
Vol 1758 (11) ◽  
pp. 1846-1851 ◽  
Author(s):  
Sébastien Deshayes ◽  
Thomas Plénat ◽  
Pierre Charnet ◽  
Gilles Divita ◽  
Gérard Molle ◽  
...  

2018 ◽  
Vol 115 (47) ◽  
pp. 11923-11928 ◽  
Author(s):  
Christoph Allolio ◽  
Aniket Magarkar ◽  
Piotr Jurkiewicz ◽  
Katarína Baxová ◽  
Matti Javanainen ◽  
...  

Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide—nonaarginine—are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.


2020 ◽  
Vol 1862 (2) ◽  
pp. 183098 ◽  
Author(s):  
Astrid Walrant ◽  
Antonio Bauzá ◽  
Claudia Girardet ◽  
Isabel D. Alves ◽  
Sophie Lecomte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document