scholarly journals Intracellular delivery of therapeutic antibodies into specific cells using antibody-peptide fusions

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Julie Gaston ◽  
Nicolas Maestrali ◽  
Guilhem Lalle ◽  
Marie Gagnaire ◽  
Alessandro Masiero ◽  
...  

AbstractBecause of their favorable properties as macromolecular drugs, antibodies are a very successful therapeutic modality for interfering with disease-relevant targets in the extracellular space or at the cell membrane. However, a large number of diseases involve cytosolic targets and designing antibodies able to efficiently reach intracellular compartments would expand the antibody-tractable conditions. Here, we genetically fused cell penetrating peptides (CPPs) at various positions to an antibody targeting cancer cells, evaluated the developability features of the resulting antibody-peptide fusions and the ability of selected constructs to reach the cytosol. We first determined positions in the IgG structure that were permissive to CPP incorporation without destabilizing the antibody. Fusing CPPs to the C-terminus of the light chain and either before or after the hinge had the least effect on antibody developability features. These constructs were further evaluated for cell penetration efficiency. Two out of five tested CPPs significantly enhanced antibody penetration into the cytosol, in particular when fused before or after the hinge. Finally, we demonstrate that specific antibody binding to the cell surface target is necessary for efficient cell penetration of the CPP-antibody fusions. This study provides a solid basis for further exploration of therapeutic antibodies for intracellular targets.

2019 ◽  
Vol 15 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Jihui Tang ◽  
Jie Ning ◽  
Xiaoyan Liu ◽  
Baoming Wu ◽  
Rongfeng Hu

<P>Introduction: Machine Learning is a useful tool for the prediction of cell-penetration compounds as drug candidates. </P><P> Materials and Methods: In this study, we developed a novel method for predicting Cell-Penetrating Peptides (CPPs) membrane penetrating capability. For this, we used orthogonal encoding to encode amino acid and each amino acid position as one variable. Then a software of IBM spss modeler and a dataset including 533 CPPs, were used for model screening. </P><P> Results: The results indicated that the machine learning model of Support Vector Machine (SVM) was suitable for predicting membrane penetrating capability. For improvement, the three CPPs with the most longer lengths were used to predict CPPs. The penetration capability can be predicted with an accuracy of close to 95%. </P><P> Conclusion: All the results indicated that by using amino acid position as a variable can be a perspective method for predicting CPPs membrane penetrating capability.</P>


2005 ◽  
Vol 390 (2) ◽  
pp. 407-418 ◽  
Author(s):  
Catherine de Coupade ◽  
Antonio Fittipaldi ◽  
Vanessa Chagnas ◽  
Matthieu Michel ◽  
Sophie Carlier ◽  
...  

Short peptide sequences that are able to transport molecules across the cell membrane have been developed as tools for intracellular delivery of therapeutic molecules. This work describes a novel family of cell-penetrating peptides named Vectocell® peptides [also termed DPVs (Diatos peptide vectors)]. These peptides, originating from human heparin binding proteins and/or anti-DNA antibodies, once conjugated to a therapeutic molecule, can deliver the molecule to either the cytoplasm or the nucleus of mammalian cells. Vectocell® peptides can drive intracellular delivery of molecules of varying molecular mass, including full-length active immunoglobulins, with efficiency often greater than that of the well-characterized cell-penetrating peptide Tat. The internalization of Vectocell® peptides has been demonstrated to occur in both adherent and suspension cell lines as well as in primary cells through an energy-dependent endocytosis process, involving cell-membrane lipid rafts. This endocytosis occurs after binding of the cell-penetrating peptides to extracellular heparan sulphate proteoglycans, except for one particular peptide (DPV1047) that partially originates from an anti-DNA antibody and is internalized in a caveolar independent manner. These new therapeutic tools are currently being developed for intracellular delivery of a number of active molecules and their potentiality for in vivo transduction investigated.


2020 ◽  
Author(s):  
Nicolas A. Abrigo ◽  
Kara Dods ◽  
Koushambi Mitra ◽  
Kaylee Newcomb ◽  
Anthony Le ◽  
...  

<p>The discovery of high-affinity peptides to many intracellular targets has become feasible through the development of diverse macrocyclic peptide libraries. But lack of cell permeability is a key feature hampering the use of these peptides as therapeutics. Here, we develop a set of small, cyclic peptide carriers that efficiently carry cargoes into the cytosol. These peptides are cyclized via side-chain alkylation, which makes them ideal for the creation of diverse mRNA or phage-displayed libraries with intrinsic cell permeability.</p>


2020 ◽  
Author(s):  
Nicolas A. Abrigo ◽  
Kara Dods ◽  
Koushambi Mitra ◽  
Kaylee Newcomb ◽  
Anthony Le ◽  
...  

<p>The discovery of high-affinity peptides to many intracellular targets has become feasible through the development of diverse macrocyclic peptide libraries. But lack of cell permeability is a key feature hampering the use of these peptides as therapeutics. Here, we develop a set of small, cyclic peptide carriers that efficiently carry cargoes into the cytosol. These peptides are cyclized via side-chain alkylation, which makes them ideal for the creation of diverse mRNA or phage-displayed libraries with intrinsic cell permeability.</p>


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4298-4298
Author(s):  
Jose A. Gomez ◽  
Tomoyuki Yoshida ◽  
Minh Lam ◽  
Clark W. Distelhorst ◽  
Shigemi Matsuyama

Abstract Plasma membrane is known to have a high degree of selectivity for molecular trafficking, and it does not allow the penetration of peptides larger than 3 amino acids. Previously known exceptions of large peptides that penetrate the plasma membrane are the Arginine rich peptides such as human immunodeficiency virus (HIV)-tat peptides. However, the mechanism of cell penetration of these peptides is largely unknown. Bax Inhibiting Peptides (BIP) are penta-peptides derived from the Bax binding domain of Ku70. At present, three types of BIP have been developed. Those are: VPMLK, VPTLK, and VPALR. All of these three BIPs directly bind Bax and inhibit Bax-mediated cell death in cultured cells as well as in animal study. Surprisingly, BIPs are cell permeable and autonomously enter the cytoplasm of the cells within 1 hr. Therefore BIPs are recognized as new members of cell penetration peptides. In this study, we investigated the mechanism of cell penetration of BIPs. DAMI cells (a human megakaryocyte cell line) and HeLa cells were used to investigate the detailed mechanism of cell penetration of BIPs. To detect the cell entry of BIPs, fluorescent dyes (fluorescein or tetramethylrodhamine) were conjugated to the N-terminus of BIPs and the cytoplasmic localization of BIPs was confirmed by confocal microscopy. Cell Penetration activities of BIPs were detected at 1 uM concentration in the culture medium. The significant accumulation of BIPs in the cytoplasm were detected within 1 hour of incubation both at 4 °C and 37 °C, suggesting that ATP-independent mechanism of cell penetration of BIP exists. However, cellular uptake of BIPs reaches plateau at 100 uM at 4 °C, whereas it increases in a dose dependent manner up to 1 mM at 37 °C without any sign of cytotoxicity. These results suggest that there are at least two mechanisms contributing to the cell penetration of BIPs that are, “ATP-independent (4 °C)” and “ATP-dependent (37 °C)” mechanisms. In addition to BIPs, we generated a series of mutated BIPs that do not bind Bax but retain cell-penetrating activities. We performed competition assay using fluorescence dye-labeled and non-labeled BIP (and the mutant BIPs), and the preliminary results suggest that there is a specific receptor for each peptide for its delivery into the cells. Our data also indicates that BIPs can deliver a cargo molecule (e.g. fluorescent dye) with at least the same molecular weight. Unlike other cell penetrating peptides, BIP has minimum toxicity due to its nature to inhibit Bax-mediated cell death. Along with the new data showing that BIP protects cells from pathological damages in cell culture and animal model, we will discuss the potential application of BIPs as a new type of drug delivery tool.


2014 ◽  
Vol 50 (55) ◽  
pp. 7254-7257 ◽  
Author(s):  
Gabriela A. Eggimann ◽  
Emilyne Blattes ◽  
Stefanie Buschor ◽  
Rasomoy Biswas ◽  
Stephan M. Kammer ◽  
...  

Redesigning linear cell penetrating peptides (CPPs) into a multi-branched topology with short dipeptide branches gave cell penetrating peptide dendrimers (CPPDs) with higher cell penetration, lower toxicity and hemolysis and higher serum stability than linear CPPs.


2010 ◽  
Vol 1 (2) ◽  
pp. 109-116 ◽  
Author(s):  
Jamie Brugnano ◽  
Brian C. Ward ◽  
Alyssa Panitch

AbstractCell penetrating peptides (CPPs) have been successful in delivering cargo into many different cell types and are an important alternative to other methods of permeation that might damage the integrity of the cell membrane. The traditional view of CPPs is that they are inert molecules that can be successfully used to deliver many cargos intracellularly. The goal of this review is to challenge this traditional understanding of CPPs. Recent literature has demonstrated that CPPs themselves can convey biological activity, including the alteration of gene expression and inhibition of protein kinases and proteolytic activity. Further characterization of CPPs is required to determine the extent of this activity. Research into the use of CPPs for intracellular delivery should continue with investigators being aware of these recent results.


Sign in / Sign up

Export Citation Format

Share Document