scholarly journals Phenol solutions treatment by using hydrophobized track-etched membranes

2020 ◽  
Vol 99 (3) ◽  
pp. 99-109
Author(s):  
A.B. Yeszhanov ◽  
◽  
S.S. Dosmagambetova ◽  

Phenols are one of the most common surface water pollution. The discharge of phenolic waters into water bodies and streams sharply degrade their general sanitary condition, since these compounds have a toxic effect, and phenols can intensively absorb oxygen dissolved in water, which negatively affects the life of organisms in water bodies. Therefore, water treatment of phenols is an important environmental problem. In this study, the hydrophobic polyethylene terephthalate track-etched membranes (PET TeMs) were tested in water treatment from phenol by direct contact membrane distillation (DCMD). Hydrophobic PET TeMs were obtained by UV-graft polymerization of styrene, triethoxyvinylsilane with the addition of vinylimidazole (VIM), as well as by coating with fluorine-containing silanes. Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and liquid entry pressure (LEP) analysis were used for membrane characterization. The contact angle after modification of PET TeMs was reached more than 130°. The efficiency of water purification from phenol was evaluated by water-flux measurements and fluorimetric method. The phenols solution was used at a concentration of 0.5, 1 and 2 g/l. The largest permeate flux of hydrophobized membranes was 1.1 kg/ m2•h.

2020 ◽  
Vol 17 (2) ◽  
pp. 45-54
Author(s):  
A.B. Yeszhanov ◽  

This article provides the results of liquid low-level radioactive wastes treatment by direct contact membrane distillation using polyethylene terephthalate hydrophobic track-etched membranes. The hydrophobization of track-etched membranes was carried out by UV-induced graft polymerization of triethoxyvinylsilane with styrene and coating with fluorine-containing silanes. Hydrophobic membranes were investigated by scanning electron microscope, Fourier-transform infrared spectroscopy, contact anglemeasurements, and liquid entry pressure analysis. Prepared membranes were tested in treatment of liquid low-level radioactive wastes by membrane distillation. The influence of pore sizes on water flux and rejection degree was studied. Rejection degree was evaluated by conductometry and atomic emission method. Decontamination factors evaluated by gamma-ray spectroscopy for 60Co, 137Cs, and 241Am are 85.4, 1900 and 5.4 for membranes modified with polystyrene and triethoxyvinylsilanewith pore diameters of 142 nm; 85.0, 1462 and 4 for membranes modified with perfluorododecyltrichlorosilanewith pore diameters of 150 nm respectively.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 493
Author(s):  
Amine Charfi ◽  
Fida Tibi ◽  
Jeonghwan Kim ◽  
Jin Hur ◽  
Jinwoo Cho

This study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8. Higher permeate flux was observed for higher feed temperature, which allows higher vapor pressure. At higher pH, a smaller particle size was detected with lower permeate flux. A mathematical model based on mass balance was developed to simulate permeate flux with time by assuming (i) the cake formation controlled by attachment and detachment of foulant materials and (ii) the increase in specific cake resistance, the function of the cake porosity, as the main mechanisms controlling membrane fouling to investigate the fouling mechanism responsible of permeate flux decline. The model fitted well with the experimental data with R2 superior to 0.9. High specific cake resistance fostered by small particle size would be responsible for the low permeate flux observed at pH 8.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Dong-Wan Cho ◽  
Gihoon Kwon ◽  
Jeongmin Han ◽  
Hocheol Song

In this study, the influence of humic acid on the treatment of coalbed methane water by direct contact membrane distillation was examined with bench-scale test unit. During short-term distillation (1000 min), high level of humic acid above 50 ppm resulted in significant decrease in permeate flux, while low level of humic acid (∼2 ppm) had little influence on the flux. For the long-term distillation (5000 min), the flux decline began at 3400 min in the presence of 5 ppm humic acid and 5 mM Ca2+, and decreased to ∼40% of initial flux at 5000 min. The spectroscopic analysis of the membrane used revealed that the surface was covered by hydrophilic layers mainly composed of calcite. The membrane fouling effect of humic acid became more significant in the presence of Ca2+ due to more facile calcite formation on the membrane surface. It was demonstrated that humic acid enhanced CaCO3 deposition on the membrane surfaces, thereby expediting the scaling phenomenon.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 225
Author(s):  
Normi Izati Mat Nawi ◽  
Muhammad Roil Bilad ◽  
Ganeswaran Anath ◽  
Nik Abdul Hadi Nordin ◽  
Jundika Candra Kurnia ◽  
...  

Standalone membrane distillation (MD) and forward osmosis (FO) have been considered as promising technologies for produced water treatment. However, standalone MD is still vulnerable to membrane-wetting and scaling problems, while the standalone FO is energy-intensive, since it requires the recovery of the draw solution (DS). Thus, the idea of coupling FO and MD is proposed as a promising combination in which the MD facilitate DS recovery for FO—and FO acts as pretreatment to enhance fouling and wetting-resistance of the MD. This study was therefore conducted to investigate the effect of DS temperature on the dynamic of water flux of a hybrid FO–MD. First, the effect of the DS temperature on the standalone FO and MD was evaluated. Later, the flux dynamics of both units were evaluated when the FO and DS recovery (via MD) was run simultaneously. Results show that an increase in the temperature difference (from 20 to 60 °C) resulted in an increase of the FO and MD fluxes from 11.17 ± 3.85 to 30.17 ± 5.51 L m−2 h−1, and from 0.5 ± 0.75 to 16.08 L m−2 h−1, respectively. For the hybrid FO–MD, either MD or FO could act as the limiting process that dictates the equilibrium flux. Both the concentration and the temperature of DS affected the flux dynamic. When the FO flux was higher than MD flux, DS was diluted, and its temperature decreased; both then lowered the FO flux until reaching an equilibrium (equal FO and MD flux). When FO flux was lower than MD flux, the DS was concentrated which increased the FO flux until reaching the equilibrium. The overall results suggest the importance of temperature and concentration of solutes in the DS in affecting the water flux dynamic hybrid process.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guangfu Cao ◽  
Qingfen Ma ◽  
Jingru Li ◽  
Shenghui Wang ◽  
Chengpeng Wang ◽  
...  

A Bubbling and Vacuum-enhanced direct contact membrane distillation (BVDCMD) is proposed to improve the water production rate of the direct contact membrane distillation (DCMD-)based seawater desalination process. Its heat and mass transfer mechanism are theoretically analyzed, and a CFD model is established, which is verified by the published data. Four types of the noncondensable gas, “O2,” “air,” “N2,” and “H2,” are adopted as the bubbling gas, and their process enhancements under different pressure of permeate side, temperature, and NaCl concentration of feed side and flow velocities are investigated. The results show that the permeate flux increased remarkably with the decrease in the viscosity of the bubbling gas, and hence, “H2” is the best option for the bubbling gas, with the permeate flux being enhanced by 144.11% and the effective heat consumption being increased by 20.81% on average. The effective water production rate of BVDCMD is predicted to be 42.38% more than that of DCMD, proving its feasibility in the seawater desalination.


2014 ◽  
Vol 69 (9) ◽  
Author(s):  
S. O. Lai ◽  
K. C. Chong ◽  
K. M. Lee ◽  
W. J. Lau ◽  
B. S. Ooi

Membrane distillation (MD) is one of the recent rising membrane separation techniques adopted in the desalination and wastewater treatment. Unlike other pressure-driven separation processes such as reverse osmosis and nanofiltration, MD is a thermal-driven process which involves vapor pressure difference across the feed and permeates solutions. As such, MD requires low energy consumption. Hydrophobic polymeric materials such as polyvinylidene fluoride (PVDF) are frequently used in direct contact membrane distillation (DCMD) due to low surface energy and promising thermal resistance. In this study, the DCMD hollow fiber membranes were separately prepared with PVDF and PVDF blended with lithium chloride (LiCl) through dry/wet phase inversion method. Subsequently, the membranes were used in a DCMD process to remove sodium chloride (NaCl) under different feed inlet temperatures to examine the effect of LiCl additives on the neat membrane. The result showed that by adding LiCl into the neat membrane solution, the finger-like structure was change to a sponge-like structure with microvoids. Furthermore, the performance of the LiCl additive membrane in term of permeate flux was found to be 20% higher compared to that of the neat membrane. Other results of the membrane characteristics were also discussed.      


Sign in / Sign up

Export Citation Format

Share Document