specific cake resistance
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 72 (7) ◽  
pp. 841-849
Author(s):  
Guigui Christelle ◽  
Nga Vu Thi Thu

Membrane bioreactor (MBR) has been increasingly used for municipal wastewater treatment and reuse due to its good effluent quality. However, membrane fouling remains the major limitation of MBR. Understanding fouling is still a key issue for a more sustainable operation of MBRs. Thus, this research presents the influence of specific cake resistance (α) on the fouling propensity in the MBR. Correlation between α value with fouling resistance (Rf), fouling rate (dTMP/dt), especially of peak height 100-1000 kDa protein-like SMPs was investigated. The result reported that the α value was strongly correlated with the dTMP/dt in the MBR (R2 value of close to 1). In this study, however, there is an obvious discrepancy between the fouling resistance calculated from the resistance in the series model and the α value in the supernatant filtration. These observations demonstrated that the fouling propensities of the membrane could be monitored by the transmembrane pressure and the fouling characteristics, include fouling resistance and specific cake resistance in the filtration cell.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 493
Author(s):  
Amine Charfi ◽  
Fida Tibi ◽  
Jeonghwan Kim ◽  
Jin Hur ◽  
Jinwoo Cho

This study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8. Higher permeate flux was observed for higher feed temperature, which allows higher vapor pressure. At higher pH, a smaller particle size was detected with lower permeate flux. A mathematical model based on mass balance was developed to simulate permeate flux with time by assuming (i) the cake formation controlled by attachment and detachment of foulant materials and (ii) the increase in specific cake resistance, the function of the cake porosity, as the main mechanisms controlling membrane fouling to investigate the fouling mechanism responsible of permeate flux decline. The model fitted well with the experimental data with R2 superior to 0.9. High specific cake resistance fostered by small particle size would be responsible for the low permeate flux observed at pH 8.


2020 ◽  
Vol 82 (9) ◽  
pp. 1868-1876
Author(s):  
Hideo Maruyama ◽  
Hideshi Seki

Abstract The effect of ethylated soy protein-based bioflocculant (EtSP) as a filter aid reagent was investigated. The efficiency of EtSP as a filter aid was evaluated in terms of the specific cake resistance, α, and was compared with chitosan and polyaluminum chloride (PAC). Diatomite and kaolin were used as model particles. Total filtration resistance, R, decreased with increasing flocculant dosage (wt.%, flocculant/particle) and was almost constant in the range of 1 wt.% or more for both particles. The α value was significantly decreased from 1.01 × 1011 to 9.01 × 1010 m/kg for diatomite and from 5.11 × 1010 to 5.20 × 109 m/kg for kaolin by the addition of EtSP in the case of 1.0 wt.%. The α value for cakes formed by EtSP was much smaller than that formed by chitosan and PAC. In the case of diatomite, in the dose range of 0.5–1.0 wt.%, the α value for cakes formed by EtSP and chitosan was almost the same. However, at the excess dose of 2.0 wt.% over, the α value formed by chitosan abruptly increased. In the case of kaolin, in the dose range of 1.0–2.0 wt.%, the α values of chitosan and PAC were mostly the same, however, these values were larger by ca. nine times than that of EtSP.


Membranes ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 33 ◽  
Author(s):  
Kitae Park ◽  
Pooreum Kim ◽  
Hyoung Gun Kim ◽  
JiHoon Kim

In this paper, we investigated the membrane fouling mechanism according to the coagulant dosage in algal rich water using a ceramic membrane. The algae that were used in this experiment were Microcystis sp. of cyanobacteria, and the fouling mechanism was analyzed through irrigation and filtration resistance through a constant flow operation. The experimental results showed that the filtration resistance decreased as the coagulant dosage increased, but the irreversibility at above optimum coagulant dosage increased. Additionally, as the coagulant dosage increased, the resistance value due to cake and adsorption contamination decreased, and membrane fouling by adsorption was dominant in comparison with cake fouling and adsorption fouling. The specific cake resistance was decreased as the coagulant dosage increased. The characteristics of the cake layer according to the coagulant dosage were found to loosely form the cake layer by increasing micro-size algae as the coagulant dosage increased. The results of this experiment confirmed the membrane fouling mechanism according to coagulant dosage when the ceramic membrane filtered algal rich water.


2017 ◽  
Vol 77 (4) ◽  
pp. 1015-1026 ◽  
Author(s):  
Shuang Zhao ◽  
Longyue Shi ◽  
Yu Ma ◽  
Zhan Wang

Abstract In order to find a model solution to simulate actual extracellular polymeric substances (EPS) solution in terms of filterability behavior, a series of experiments were conducted in a dead-end unstirred cell with 0.1 μm polyvinylidene fluoride membranes using binary/ternary mixtures consisting of sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA). Three target parameters (cumulative filtrate volume (CFV), specific cake resistance (αc) and rejection (R)) were compared and the roles of mixture components were investigated. The order of degree of influence on CFV, αc and R in ternary mixture was SA (94.5%, 85.6% and 88.2%, respectively) > BSA (5.2%, 10.3% and 8.0%) > HA (0.3%, 4.1% and 3.8%). Meanwhile, when the composition of ternary mixture was SA/BSA/HA = 285.1/150.1/10.2 mg·L−1, the deviation for CFV, αc and R was 7.65%, 19.6% and 7.27%, respectively, while the corresponding values for the most suitable binary solution (SA/BSA = 140.4/50.35 mg·L−1) were −12%, 1% and 164% respectively. This indicated that the ternary solution demonstrated a more accurate estimation than the binary solution for imitating the filterability of actual EPS solution. Therefore, the ternary mixture could be employed efficiently to replace the actual EPS solution in terms of three target parameters in practice applications.


2016 ◽  
Vol 74 (9) ◽  
pp. 2105-2114 ◽  
Author(s):  
J. Ouma ◽  
S. Septien ◽  
K. Velkushanova ◽  
J. Pocock ◽  
C. Buckley

Urine ultrafiltration (UF) was studied in terms of flux, permeability, resistance and fouling. Two types of samples were used: stored urine representing the feedstock obtained from urine diversion dry toilets; and diluted stored urine representing the feedstock obtained from urinals. Three different filtration experiment sets were adopted in this study. For the first case, pressure was set in an ascending order, i.e. from 10 to 60 kPa during filtration of stored urine. For the second case, pressure was set in a descending order, i.e. from 60 to 10 kPa for the same feed stream. The third case involved filtration of diluted urine with pressure in ascending order, i.e. from 10 to 60 kPa. The results indicated that diluted urine had higher flux than undiluted urine with maximum values of 43 and 26 L·m−2·h−1 respectively. Cake formation was the dominating fouling mechanism during urine filtration with a contribution of about 90% to the total hydraulic resistance. The contribution of chemically irreversible fouling was low (−2%), unless operating from high to low pressures. Indeed, irreversible fouling appeared to be greater during the experiments starting at higher pressure. Although undiluted urine had a higher fouling potential compared to diluted urine, the specific cake resistance was higher for diluted urine, probably due to a denser cake caused by lower particle sizes in that sample. The permeate obtained after urine filtration had much lower suspended solids content compared to the feedstock, with rejections up to 99%. The concentration of the ionic species remained unchanged, and 75% of the organic compounds and dissolved solids remained in the permeate. Urine UF could then be used as pre-treatment to remove suspended solids.


2011 ◽  
Vol 64 (11) ◽  
pp. 2299-2305 ◽  
Author(s):  
M. L. Salazar-Peláez ◽  
J. M. Morgan-Sagastume ◽  
A. Noyola

A pilot UASB reactor coupled with an external ultrafiltration (UF) membrane was operated under three different hydraulic retention times (HRT) for domestic wastewater treatment. The aim was to assess the HRT influence on system performance and fouling. The highest concentrations of COD, total solids, extracellular polymeric substances (EPS) and soluble microbial products (SMP) in UASB effluent and permeate were found when the UASB reactor was operated under the lowest HRT studied (4 hours); although the fulfillment of Mexican Standard for wastewater reclamation was not compromised. This fact could be attributed to the higher shear stress forces inside the UASB reactor when it was operated at low HRT, which promoted the release of biopolymeric substances in its effluent. Besides, the fouling propensity in the UASB effluent was worsened with HRT reduction, by increasing the fouling rate and the specific cake resistance. Based on these results, it is recommended to avoid operating the UASB reactor at low HRTs (less than 4 hours) in order to control SMP and EPS fouling potential. The results presented also suggest that HRT reduction has a detrimental effect on performance and fouling.


Sign in / Sign up

Export Citation Format

Share Document