scholarly journals Ecological security pattern construction based on multi-scenario trade-off of ecosystem services: A case study of Wafangdian, Dalian

2020 ◽  
Vol 35 (3) ◽  
pp. 546
Author(s):  
ZHAO Wen-zhen ◽  
HAN Zeng-lin ◽  
YAN Xiao-lu ◽  
ZHONG Jing-qiu
2019 ◽  
Vol 11 (22) ◽  
pp. 6416 ◽  
Author(s):  
Ouyang ◽  
Wang ◽  
Zhu

Coordinating ecosystem service supply and demand equilibrium and utilizing machine learning to dynamically construct an ecological security pattern (ESP) can help better understand the impact of urban development on ecological processes, which can be used as a theoretical reference in coupling economic growth and environmental protection. Here, the ESP of the Changsha–Zhuzhou–Xiangtan urban agglomeration was constructed, which made use of the Bayesian network model to dynamically identify the ecological sources. The ecological corridor and ecological strategy points were identified using the minimum cumulative resistance model and circuit theory. The ESP was constructed by combining seven ecological sources, “two horizontal and three vertical” ecological corridors, and 37 ecological strategy points. Our results found spatial decoupling between the supply and demand of ecosystem services (ES) and the degradation in areas with high demand for ES. The ecological sources and ecological corridors of the urban agglomeration were mainly situated in forestlands and water areas. The terrestrial ecological corridor was distributed along the outer periphery of the urban agglomeration, while the aquatic ecological corridor ran from north to south throughout the entire region. The ecological strategic points were mainly concentrated along the boundaries of the built-up area and the intersection between construction land and ecological land. Finally, the ecological sources were found primarily on existing ecological protection zones, which supports the usefulness of machine learning in predicting ecological sources and may provide new insights in developing urban ESP.


2021 ◽  
Author(s):  
Tiantian Chen ◽  
Li Peng ◽  
Qiang Wang

Abstract The Grain to Green Program (GTGP), as a policy tool for advancing ecological progress, has been operating for 20 years and has played an important role in improving ecosystem service values. However, there are few studies on the trade-off/synergy changes in ecosystem services during the implementation of the GTGP and how to select the optimal scheme for regional ecological security based on the trade-off relationship. Thus, we took the Chengdu-Chongqing urban agglomeration (CCUA) in southwestern China as the study area; we used multisource data and the corresponding models and methods to estimate the regional food production, carbon sequestration, water yield, soil conservation and habitat quality services. Then, we clarified the trade-off/synergy relationships among ecosystem services from 2000 to 2015 by spatial analysis and statistical methods and evaluated the influential mechanism of the GTGP on trade-offs between ecosystem services. Finally, different risk scenarios were constructed by the ordered weighted average algorithm (OWA), and the regional ecological security pattern was simulated under the principle of the best protection efficiency and the highest trade-off degree. We found that (1) the trade-offs/synergies of regional ecosystem services changed significantly from 2000 to 2015. Among them, food production, water yield and soil conservation have always had trade-off relationships, while carbon sequestration, soil conservation and habitat quality have all had synergistic relationships. The relationships between carbon sequestration and water yield and food production changed from non-correlated to trade-off/synergistic, and the relationship between habitat quality and food production and water yield was not obvious. (2) Except for carbon sequestration service, the trade-off intensity between other ecosystem services decreased, indicating that the change trend of ecosystem services in the same direction was obvious. (3) The GTGP has been an important factor affecting the trade-off intensity of regional ecosystem services. On the one hand, it has strengthened the synergistic relationships among carbon sequestration, soil conservation and habitat quality; on the other hand, it has increased the constraints of water resources on soil conservation and vegetation restoration. (4) The decision risk coefficient α = 1.6 was the most suitable scenario, the total amount of regional ecosystem services was high, and the allocation was balanced under this scenario. The ecological security area corresponding to this scenario was also the area with high carbon sequestration and habitat quality services. The purpose of this study was to provide a scientific reference for the precise implementation of the GTGP.


2020 ◽  
Vol 23 (1) ◽  
pp. 563-590
Author(s):  
Xingxing Jin ◽  
Luyao Wei ◽  
Yi Wang ◽  
Yuqi Lu

AbstractThe construction of ecological security pattern is one of the important ways to alleviate the contradiction between economic development and ecological protection, as well as the important contents of ecological civilization construction. How to scientifically construct the ecological security pattern of small-scale counties, and achieve sustainable economic development based on ecological environment protection, it has become an important proposition in regulating the ecological process effectively. Taking Fengxian County of China as an example, this paper selected the importance of ecosystem service functions and ecological sensitivity to evaluate the ecological importance and identify ecological sources. Furthermore, we constructed the ecological resistance surface by various landscape assignments and nighttime lighting modifications. Through a minimum cumulative resistance model, we obtained ecological corridors and finally constructed the ecological security pattern comprehensively combining with ecological resistance surface construction. Accordingly, we further clarified the specific control measures for ecological security barriers and regional functional zoning. This case study shows that the ecological security pattern is composed of ecological sources and corridors, where the former plays an important security role, and the latter ensures the continuity of ecological functions. In terms of the spatial layout, the ecological security barriers built based on ecological security pattern and regional zoning functions are away from the urban core development area. As for the spatial distribution, ecological sources of Fengxian County are mainly located in the central and southwestern areas, which is highly coincident with the main rivers and underground drinking water source area. Moreover, key corridors and main corridors with length of approximately 115.71 km and 26.22 km, respectively, formed ecological corridors of Fengxian County. They are concentrated in the western and southwestern regions of the county which is far away from the built-up areas with strong human disturbance. The results will provide scientific evidence for important ecological land protection and ecological space control at a small scale in underdeveloped and plain counties. In addition, it will enrich the theoretical framework and methodological system of ecological security pattern construction. To some extent, it also makes a reference for improving the regional ecological environment carrying capacities and optimizing the ecological spatial structure in such kinds of underdeveloped small-scale counties.


2019 ◽  
Vol 11 (22) ◽  
pp. 6343 ◽  
Author(s):  
Jiulin Li ◽  
Jiangang Xu ◽  
Jinlong Chu

The construction of an ecological security pattern (ESP) is one of the basic methods to protect regional ecological security and enhance people’s well-being. In the case of Anhui province, located in the Yangtze River Delta region of China, regional ecological sources were assessed and recognized in terms of ecosystem services, and regional ESP was then constructed based on circuit theory. Current density was applied to analyze the significance of patches and corridors and recognize sticking points, and thereby strategies were introduced to optimize regional ESP. Results of ecosystem services function assessment showed that there were 47 ecological patches, 107 ecological corridors, 16 pinch points, and six sticking points in the ESP of Anhui province. The watershed of the Yangtze and Huai rivers divides the ESP of the northern and southern Anhui, which has huge landscape spatial heterogeneity. Areas with relatively good ecological resources were basically located between Dabie Mountain area in the west and the low hilly area in the south of Anhui, with mostly woodland and farmland as ecological sources. However, cities in the northern Anhui, also in the north of the watershed of the Yangtze and Huai rivers, face severe situations in terms of environmental protection. This study conducted spatial analyses on ESP with different thresholds and proposed to classify different ESPs according to ecological control. This helps to alleviate the contradiction between economic development and environmental protection, and improve the supply capacity of regional ecosystem services, in order to satisfy the regional demand for ecosystem services. Meanwhile, this study offers more methods to construct regional ESP and introduces targeted measures to improve connectivity, which is of practical guidance for the connectivity and optimization of ecological patterns.


2020 ◽  
Vol 12 (6) ◽  
pp. 2239 ◽  
Author(s):  
Shougang Wang ◽  
Jiu Huang ◽  
Haochen Yu ◽  
Chuning Ji

The ecological integrity and biodiversity of steppes were destroyed under the long-term and high-intensity development of open-pit coal mines in China, causing desertification, steppe degradation, landscape function defect, and so on. As a source of species maintenance and dispersal, an ecological source is a key area for preservation in order to restore the ecological security pattern of the larger landscape. The purpose of this study was to establish a landscape key area recognition model to identify the landscape key areas (LKA) surrounding an open pit coalmine located in semi-arid steppe. This study takes the Yimin open pit mining area as a case study. We assessed Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) remote sensing images taken during the peak season of vegetation growth from July to August in 1999, 2006, 2011, and 2017. From these images, we identified the main landscape types and vegetation coverage grades in order to identify the ecological land. Next, we applied the three indices of Importance of Patch Connectivity, Habitat Quality, and Ecosystem Service Value to calculate the comprehensive results that identify ecological land. Finally, the ecological land quality results of different years are superimposed and averaged, and then Very Important Patch (VIMP), Important Patch (IMP), and General Patch (GEP) areas were used for LKA extraction. Our results showed LKA to cover 177.35 km2, accounting for 20.01% of the total study area. The landscape types identified as LKA are primarily grassland (47.37%), wetland (40.27%), and shrubland (11.88%), indicating that landscape type correlates strongly with its value as a landscape key area. The proposed landscape key area recognition model could enrich the foundations for ecological planning and ecological security pattern construction in order to support ecological protection and restoration in semi-arid steppe areas affected by coal mining.


2020 ◽  
Vol 192 (11) ◽  
Author(s):  
Jie Zhao ◽  
Cheng Li

AbstractInvestigating the spatiotemporal trends and trade-off/synergy relationships among ecosystem services can provide effective support for urban planning and decision making toward sustainable development. With Nanjing city in China as a case study, this study assessed the spatiotemporal dynamics of six key ecosystem services from 2005 to 2030. Integration of Markov-cellular automata and ecosystem services models was realized to analyze the potential impacts of future urbanization on ecosystem services by simulating business-as-usual (BAU), cropland protection (CP), and ecological restoration (ER) scenarios. Furthermore, an innovative trade-off/synergy degree was developed to quantify the magnitude of the complex relationship among the multiple ecosystem services under the different scenarios. Due to the rapid expansion of built-up land, carbon storage, habitat quality, and air purification decreased 2.92%, 5.80%, and 7.91%, respectively. The CP scenario exhibited the highest crop production values, and the ER scenario was a better urban development strategy that enhanced the regulating ecosystem services at the expense of crop production. To promote urban ecosystem services and minimize trade-offs, we proposed certain future urban development strategies, including ecological corridor construction and compact development. The study could provide a scientific reference for the effective ecosystem management of Nanjing and other rapidly urbanized regions.


2012 ◽  
Vol 32 (21) ◽  
pp. 6755-6766 ◽  
Author(s):  
蒙吉军 MENG Jijun ◽  
朱利凯 ZHU Likai ◽  
杨倩 YANG Qian ◽  
毛熙彦 MAO Xiyan

Sign in / Sign up

Export Citation Format

Share Document