scholarly journals Prediction of Explosive Spalling of Heated Steel Fiber Reinforced Concrete using Artificial Neural Networks

2020 ◽  
Vol 18 (5) ◽  
pp. 227-240
Author(s):  
Jin-Cheng Liu ◽  
Zhigang Zhang
Author(s):  
Luis Octavio González Salcedo ◽  
Aydee Patricia Guerrero Zúñiga ◽  
Silvio Delvasto Arjona ◽  
Adrián Luis Ernesto Will

Resumen En diseño y construcción de estructuras de concreto, la resistencia a compresión lograda a los 28 días, es la especificación de control de estabilidad de la obra. La inclusión de fibras como reforzamiento de la matriz cementicia, ha permitido una ganancia en sus propiedades, además de la obtención de un material de alto desempeño; sin embargo, la resistencia a compresión sigue siendo la especificación a cumplir en la normatividad de la construcción. Las redes neuronales artificiales, como un símil de las neuronas biológicas, han sido utilizadas como herramientas de predicción de la resistencia a compresión en el concreto sin fibra. Los antecedentes en este uso, muestran que es de interés el desarrollo de aplicaciones en los concretos reforzados con fibras. En el presente trabajo, redes neuronales artificiales han sido elaboradas para predecir la resistencia a compresión en concretos reforzados con fibras de polipropileno. Los resultados de los indicadores de desempeño muestran que las redes neuronales artificiales elaboradas pueden realizar una aproximación adecuada al valor real de la propiedad mecánica, abriendo una futura e interesante agenda de investigación. Palabras ClavesResistencia a compresión; concreto reforzado con fibras; fibra de polipropileno; predicción; inteligencia artificial; redes neuronales artificiales.   Abstract In concrete structures’ design and construction, the compressive strength achieved at 28 days, is the work’s stability control specification. The inclusion of reinforcing fibers into the cementicious matrix, has allowed a gain in their properties, as well as obtaining a high performance material, however, the compressive strength remains the specification to meet the construction regulations. Artificial neural networks as a biological neurons’ simile have been used as tools for predicting the plain concrete compressive strength. The backgrounds in this application show that interest is the development of applications in fiber-reinforced concrete. In this paper, artificial neural networks have been developed to predict the compressive strength in polypropylene fiber reinforced concrete. The results of the performance indicators show that the developed artificial neural networks can perform an adequate approximation to the actual value of the mechanical property, opening an interesting future research.KeywordsCompressive strength, fiber-reinforced concrete, polypropylene fiber, prediction, artificial intelligence, artificial neural networks.


2021 ◽  
Vol 303 ◽  
pp. 124502
Author(s):  
Marcello Congro ◽  
Vitor Moreira de Alencar Monteiro ◽  
Amanda L.T. Brandão ◽  
Brunno F. dos Santos ◽  
Deane Roehl ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2324 ◽  
Author(s):  
Peng Zhang ◽  
Luoyi Kang ◽  
Juan Wang ◽  
Jinjun Guo ◽  
Shaowei Hu ◽  
...  

Steel-fiber-reinforced concrete (SFRC) is being increasingly applied to various buildings and civil infrastructure as an advanced cementitious composite. In recent years, the requirements for SFRC in the construction industry have increased. Additionally, the fire resistance of SFRC has attracted attention; therefore, numerous investigations regarding the residual properties of SFRC have been conducted. This paper critically reviews the mechanical properties of SFRC subjected to elevated temperatures, including its residual compressive strength, flexural strength, tensile strength, elastic properties, fracture properties, and stress–strain relationships. The residual mechanical performance of SFRC and the action mechanism of steel fibers are reviewed in detail. Moreover, factors affecting the explosive spalling of concrete at high temperatures as well as the effect of steel fibers on the microstructure of heated concrete are discussed. It is demonstrated that, in general, SFRC exhibits better residual mechanical properties when exposed to elevated temperatures than plain concrete and can prevent the risk of explosive spalling more effectively. The purpose of this literature review is to provide an exhaustive insight into the feasibility of SFRC as a refractory building material; additionally, future research needs are identified.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


1984 ◽  
Vol 21 (3) ◽  
pp. 108-111
Author(s):  
V. S. Sterin ◽  
V. A. Golubenkov ◽  
G. S. Rodov ◽  
B. V. Leikin ◽  
L. G. Kurbatov

Sign in / Sign up

Export Citation Format

Share Document