Ice Concentration in the Kara Sea and Factors Determining Its Interannual Variability

Author(s):  
Л Наумов ◽  
L Naumov ◽  
С Гордеева ◽  
S Gordeeva
2019 ◽  
Vol 65 (3) ◽  
pp. 239-254 ◽  
Author(s):  
O. Ya. Sochnev ◽  
K. A. Kornishin ◽  
Ya. О. Yefimov ◽  
Ye. U. Mironov ◽  
V. S. Porubayev

Polar Science ◽  
2011 ◽  
Vol 5 (2) ◽  
pp. 104-117 ◽  
Author(s):  
Martina B. Smith ◽  
Jean-Philippe Labat ◽  
Alexander D. Fraser ◽  
Robert A. Massom ◽  
Philippe Koubbi

2017 ◽  
Vol 30 (6) ◽  
pp. 2103-2120 ◽  
Author(s):  
Alexander V. Chernokulsky ◽  
Igor Esau ◽  
Olga N. Bulygina ◽  
Richard Davy ◽  
Igor I. Mokhov ◽  
...  

A long-term climatology of cloudiness over the Norwegian, Barents, and Kara Seas (NBK) based on visual surface observations is presented. Annual mean total cloud cover (TCC) is almost equal over solid-ice (SI) and open-water (OW) regions of the NBK (73% ± 3% and 76% ± 2%, respectively). In general, TCC has higher intra- and interannual variability over SI than over OW. A decrease of TCC in the middle of the twentieth century and an increase in the last few decades was found at individual stations and for the NBK as a whole. In most cases these changes are statistically significant with magnitudes exceeding the data uncertainty that is associated with the surface observations. The most pronounced trends are observed in autumn when the largest changes to the sea ice concentration (SIC) occur. TCC over SI correlates significantly with SIC in the Barents Sea, with a statistically significant correlation coefficient between annual TCC and SIC of −0.38 for the period 1936–2013. Cloudiness over OW shows nonsignificant correlation with SIC. An overall increase in the frequency of broken and scattered cloud conditions and a decrease in the frequency of overcast and cloudless conditions were found over OW. These changes are statistically significant and likely to be connected with the long-term changes of morphological types (an increase of convective and a decrease of stratiform cloud amounts).


2020 ◽  
Vol 12 (14) ◽  
pp. 2197 ◽  
Author(s):  
Walter N. Meier ◽  
J. Scott Stewart

Gridded passive microwave brightness temperatures (TB) from special sensor microwave imager and sounder (SSMIS) instruments on three different satellite platforms are compared in different years to investigate the consistency between the sensors over time. The orbits of the three platforms have drifted over their years of operation, resulting in changing relative observing times that could cause biases in TB estimates and near-real-time sea ice concentrations derived from the NASA Team algorithm that are produced at the National Snow and Ice Data Center. Comparisons of TB histograms and concentrations show that there are small mean differences between sensors, but variability within an individual sensor is much greater. There are some indications of small changes due to orbital drift, but these are not consistent across different frequencies. Further, the overall effect of the drift, while not definitive, is small compared to the intra- and interannual variability in individual sensors. These results suggest that, for near-real-time use, the differences in the sensors are not critical. However, for long-term time series, even the small biases should be corrected for. The strong day-to-day, seasonal, and interannual variability in TB distributions indicate that time-varying algorithm coefficients in the NASA team algorithm would lead to improved, more consistent sea ice concentration estimates.


2020 ◽  
Author(s):  
Stanislav Myslenkov ◽  
Vladimir Platonov ◽  
Alexander Kislov ◽  
Ksenia Silvestrova ◽  
Igor Medvedev

Abstract. Recurrence of extreme wind waves in the Kara Sea strongly influences the Arctic climate change. The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A third-generation wave model WaveWatchIII is used to reconstruct wind wave fields on an unstructured grid with a spatial resolution of 15–20 km for the period from 1979 to 2017. The mean and maximum wave heights, wavelengths and periods are calculated. The maximum significant wave height (SWH) for the whole period amounts to 9.9 m. The average long-term SWH for the ice-free period does not exceed 1.3 m. The seasonal variability of the wave parameters is analyzed. The interannual variability of storm waves recurrence with different thresholds (from 3 to 7 m) was calculated. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017. A double growth in the reccurence was observed for cases with an SWH more than 3–5 m from 1979 to 2017. The local maximum of the storm waves more than 3–4 m was observed in 1995, and the minimum in 1998. The maximum value (four cases) of the number of storms with an SWH threshold 7 m is registered in 2016. The frequency of wind speeds and ice conditions contributing to the storm waves formation were analyzed. It is shown that trends in the storm activity of the Kara Sea are primarily regulated by the ice. If the ice cover decreases in the southern part of the sea that leads to the increase of the number of events only with SWH threshold more than 3–4 m. If in the entire sea the ice cover decreases that leads already to increase of the extreme storms. The frequency of strong and long-term winds has high interannual variability and a weak positive trend. The analysis of distribution functions of the storm events with an SWH more than 3 m was carried out. Six different sectors of the Kara Sea were analyzed to reveal spatial differences. A comparison of the different distribution laws showed that the Pareto distribution is in the best agreement with the data. Up to 99 % of the points are described by this distribution. However, the extreme events with an SWH more than 6–7 m deviate from the distribution, and their probability is approximately twice as less as that predicted by the Pareto distribution. Presumably, this deviation is caused by the combined impact of rare wind speed frequencies and anomalies of the sea ice conditions.


1987 ◽  
Vol 9 ◽  
pp. 119-126 ◽  
Author(s):  
C.L. Parkinson ◽  
J.C. Comiso ◽  
H.J. Zwally ◽  
D.J. Cavalieri ◽  
P. Gloersen ◽  
...  

A detailed description of the seasonal cycle of Northern Hemisphere sea ice for 1974 is provided by the passive microwave data from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR). Sea ice extent has been mapped and analyzed in eight regions of the Arctic and marginal seas. In the seasonal sea ice areas, the ice concentration is also mapped, whereas in areas of first-year and multiyear ice mixtures, the corresponding mapping is of a parameter representing a combination of ice concentration and multiyear ice fraction. The total monthly ice extent increased from a sharp minimum of 7.6 × 106 km2 in September, when the ice pack was mostly confined to the central Arctic Ocean and portions of the Greenland Sea, Kara Sea, and Canadian Archipelago, to a broad maximum of 14.4 × 106 km2 in March, when the ice cover was nearly complete in the Arctic Ocean, Hudson Bay, Kara Sea, and Canadian Archipelago and was extensive for large portions of the other peripheral seas and bays. In the areas of seasonal sea ice coverage, the average ice concentration was approximately 75% in winter, which is close to the values observed in the Southern Ocean and significantly less than the greater-than-95% concentrations observed in the central Arctic Ocean and Hudson Bay, where the ice packs are constrained by land boundaries. Midwinter decreases in ice extent for 1—2 months are noted in the regions of the Greenland Sea and the Kara and Barents Seas.


2019 ◽  
Vol 65 (2) ◽  
pp. 125-147
Author(s):  
I. D. Rostov ◽  
E. V. Dmitrieva ◽  
N. I. Rudykh ◽  
A. A. Vorontsov

The paper discusses air (Ta) and sea surface temperature (SST) year-to-year variability due to warming of the Kara Sea, using the data from regular observations at the meteorological stations Roshydromet (GMS) in 1978–2017, NOAA optimum interpolation and reanalysis data. We use the methods of cluster, correlation analysis and Empirical Orthogonal Functions (EOF). We investigate possible cause and effect relationships of these changes with the variations of the wind field components, climatic indices and the sea ice concentration field. The cluster analysis of the three main EOF components has allowed us to identify four areas on the basis of the nature of changes of the water temperature anomalies field. The climatic changes in these areas, in the coastal and island zones of the Kara Sea have manifested themselves in the steady increase of the annual air temperature at GMS from 0,47–0,77 °C/10 years on the southwest coast to 1,33–1,49 °C/10 years in the north of the sea. This is equivalent to warming from 1,9 to 6,0 °C in the last 40 years. For the open sea the value of the Ta trend is about 1,22 °C/10 years, which corresponds to an increase in the average Ta by 4,9 °C in the last 40 years. This value is approximately 3 times greater than that for all the Northern hemisphere for the same period.Annualy, the maximal trend was observed in November and April mainly and exceeded 2–3 °C/10 years at some of the stations. We identify anomalously warm (2016 and 2012) and anomalously cold (1978, 1979, 1992 and 1998) years: the warmest year was 2012, the coldest — 1979. Positive SST trends were observed over all the sea area during the warm period of year (to 1 °C/10 years). SST increased to 2,4 °C, which is approximately 1,5 times greater than the corresponding SST values for the Northern hemisphere. The maximum SST trend (0,4 °C/10 years) was observed in the northwest and southwest parts of the sea. From June to August the trends of SST exceed the annual ones 1,5–2 times. Interannual SST and Ta variations are characterized by close correlation links. Until approximately 1998–2004 the warming was rather insignificant, and after that the growth rate of Ta and SST increased many fold. Apparently it indicates changes in the mode and the large-scale atmospheric circulation in the early 2000s. We also observed a trend of strengthening of the southern wind during the cold period of the year and the northern one — in the warm period (0,5–0,6 m/s in 40 years). It is shown that there is a close correlation between the Ta increase and the changes in the meridional component of the wind speed during the cold period of the year for all the sea areas. For the warm period it is statistically insignificant both for Ta and SST. For the cold season we observed a contribution of the large-scale mode of atmospheric circulation into the variability of V component of the wind speed. The conribution was expressed through the indeces NAO, SCAND, Pol/EUR, AZOR, ISL and the differences of ISLSIB. For the warm season this contribution is expressed through the NAO, SCAND and AO only. For the warm period we showed statistically significant correlation between the increase in SST, Ta and the processes parametrized by the AMO, EA/WR and AZOR indeces. For the cold period the indeces are AMO, Pol/Eur, SIB and ISL SIB. The interannual variations of the sea ice concentration field are characterized by close correlation with Ta changes both in the annual cycle and during the periods of ice cover formation and evolution (R = –0,7... –0,9). For these periods we showed statistically significant relationships between the first EOF mode fluctuations and two climatic indeces — AMO (R = 0,5) and Pol/Eur (R = 0,4). The relationships between the temporary variability of the sea ice concentration and the wind field characteristics are weaker and statistically significant only for the meridional component of the wind speed (R = –0,4).


Sign in / Sign up

Export Citation Format

Share Document