ORIN1001 in Patients With Advanced Solid Tumors and Relapsed Refractory Metastatic Breast Cancer

Author(s):  
2017 ◽  
Vol 23 (14) ◽  
pp. 3529-3536 ◽  
Author(s):  
Stacy L. Moulder ◽  
Virginia F. Borges ◽  
Tara Baetz ◽  
Tessa Mcspadden ◽  
Gina Fernetich ◽  
...  

Author(s):  
Ana M. Gonzalez-Angulo ◽  
Ian Krop ◽  
Argun Akcakanat ◽  
Huiqin Chen ◽  
Shuying Liu ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tzu-Pei Su ◽  
Jen-Seng Huang ◽  
Pei-Hung Chang ◽  
Kar-Wai Lui ◽  
Jason Chia-Hsun Hsieh ◽  
...  

Abstract Background To compare the value of interim 18F-FLT-PET and 18F-FDG-PET for predicting treatment outcomes in patients with metastatic breast cancer after salvage therapy. Methods Patients with metastatic breast cancer received PET/CT using 18F-FLT and 18F-FDG at baseline, after the 1st and 2nd cycle of systemic chemotherapy. The clinical response was classified according to Response Evaluation Criteria in Solid Tumors 1.1 based on contrast-enhanced CT after 3 months of systemic chemotherapy. The metabolic response on PET was assessed according to European Organization for Research and Treatment of Cancer criteria or PET Response Criteria in Solid Tumors (PERCIST) and was correlated to the clinical response, overall survival (OS), and progression-free survival (PFS). Results Twenty-five patients entered final analysis. On 18F-FDG-PET, clinical responders after 2 chemotherapy cycles (post-2c) had a significantly greater reduction of maximal standardized uptake value (SUV) and the peak SUV corrected for lean body mass (SULpeak) of the tumor than non-responders (P = 0.030 and 0.003). Metabolic response determined by PERCIST on post-2c 18F-FDG-PET showed a high area under the receiver operating characteristics curve of 0.801 in predicting clinical response (P = 0.011). Patients who were metabolic responders by PERCIST on post-2c 18F-FDG-PET had a significantly longer PFS (53.8% vs. 16.7%, P = 0.014) and OS (100% vs. 47.6%, P = 0.046) than non-responders. Survival differences between responders and non-responders in the interim 18F-FLT-PET were not significant. Conclusions 18F-FLT-PET failed to show an advantage over 18F-FDG-PET in predicting the treatment response and survival in patients with metastatic breast cancer. Assessment of treatment outcome by interim 18F-FDG-PET may aid treatment. Trial registration The study was retrospectively registered on 02/06/2020 on Clinicaltrials.gov (identifier NCT04411966).


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1091-1091
Author(s):  
Sarah Sammons ◽  
Andrew Elliott ◽  
Jeremy Meyer Force ◽  
Nicholas C. DeVito ◽  
Paul Kelly Marcom ◽  
...  

1091 Background: Tumor mutational burden (TMB) has emerged as an imperfect biomarker of immune checkpoint inhibition (ICI) outcomes in solid tumors. Despite the approval for pembrolizumab in all TMB-high (TMB-H) solid tumors, the optimal clinical approach to TMB-H or hypermutated advanced/metastatic breast cancer (MBC) is unknown with sparse prospective data. We hypothesize that TMB-H MBC will have unique genomic alterations compared to TMB-low (TMB-L) breast cancer that could inform novel therapeutic approaches. Methods: Tumor samples (N = 5621) obtained from patients with MBC were analyzed by next-generation sequencing (NGS) of DNA (592-gene panel or whole exome sequencing) and RNA (whole transcriptome sequencing) at Caris Life Sciences (Phoenix, AZ). TMB was calculated based on recommendations from the Friends of Cancer Research TMB Harmonization Project (Merino et al., 2020), with the TMB-H threshold set to ≥ 10 muts/Mb. IHC was performed for PD-L1 (Ventana SP142 ≥1% immune cells). Deficient mismatch repair (dMMR)/high microsatellite instability (MSI-H) was tested by IHC and NGS, respectively. Results: TMB-H was identified in 8.2% (n = 461) of MBC samples, with similar frequencies observed across molecular subtypes (7.8-8.6%, p = 0.85): HR+/HER2- (n = 3087) 7.8%, HR+/HER2+ (n = 266) 8.3%, HR-/HER2+ (n = 179) 7.8%, TNBC (n = 1476) 8.6%. The frequency of TMB-H was significantly increased in lobular (16%) versus ductal (5%) MBC (p < 0.01). TMB-H samples were enriched in genitourinary (42%), soft tissue (20%), and gastrointestinal non-liver (16%) biopsy specimens. Compared to TMB-L tumors, TMB-H tumors exhibited significantly higher mutation rates for TP53 (60 v 52%), PIK3CA (55 vs 31%), ARID1A (34 vs 11%), CDH1 (27 vs 11%), NF1 (22 vs 9%), RB1 (14 vs 5%), KMT2C (12 vs 7%), PTEN (12 vs 7%), ERBB2 (7 vs 2.9%), and PALB2 (3.3 vs 1%) genes (p < 0.05 each). Copy number alteration and fusion rates did not differ between TMB-H and TMB-L breast cancers. PI3K/AKT/MTOR, TP53, Histone/Chromatin remodeling, DNA damage repair (DDR), RAS, and cell cycle pathway alterations were detected in > 25% TMB-H MBCs (p < 0.05 each). dMMR/MSI-High (7.2 vs 0.3%, p < 0.01) and PD-L1 positivity (36 vs 28%, p < 0.05) frequencies were significantly increased in TMB-H tumors. DNA signature analyses including APOBEC and homologous recombination repair deficiency, as well as gene expression profiling to assess immune-related signatures and tumor microenvironment are underway. Conclusions: TMB-H breast cancers contain a unique genomic profile enriched with targetable mutations such as PIK3CA, ARID1A, NF1, PTEN, ERBB2, and PALB2. Concurrent predictive biomarkers of response to immune checkpoint inhibition such as MSI-H and PDL-1 positivity are also more prevalent in TMB-H MBC. These findings suggest novel combination strategies within TMB-H MBC could be explored.


2012 ◽  
Vol 30 (28) ◽  
pp. 3444-3447 ◽  
Author(s):  
Javier Cortés ◽  
Emiliano Calvo ◽  
Antonio González-Martín ◽  
Shaheenah Dawood ◽  
Antonio Llombart-Cussac ◽  
...  

Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 106 ◽  
Author(s):  
Fredrik Helland ◽  
Martine Hallin Henriksen ◽  
Oke Gerke ◽  
Marianne Vogsen ◽  
Poul Flemming Høilund-Carlsen ◽  
...  

18F-fluorodeoxyglucose positron emission tomography with integrated computed tomography (FDG-PET/CT) and contrast-enhanced computed tomography (CT) can be used for response evaluation in metastatic breast cancer (MBC). In this study, we aimed to review literature comparing the PET Response Criteria in Solid Tumors (PERCIST) with Response Evaluation Criteria in Solid Tumors (RECIST) in patients with MBC. We made a systematic search in Embase, PubMed/Medline, and Cochrane Library using a modified PICO model. The population was MBC patients and the intervention was PERCIST or RECIST. Quality assessment was performed using the QUADAS-2 checklist. A total of 1975 articles were identified. After screening by title/abstract, 78 articles were selected for further analysis of which 2 duplicates and 33 abstracts/out of focus articles were excluded. The remaining 43 articles provided useful information, but only one met the inclusion and none of the exclusion criteria. This was a retrospective study of 65 patients with MBC showing one-year progression-free survival for responders versus non-responders to be 59% vs. 27% (p = 0.2) by RECIST compared to 64% vs. 0% (p = 0.0001) by PERCIST. This systematic literature review identified a lack of studies comparing the use of RECIST (with CE-CT) and PERCIST (with FDG-PET/CT) for response evaluation in metastatic breast cancer. The available sparse literature suggests that PERCIST might be more appropriate than RECIST for predicting prognosis in patients with MBC.


Sign in / Sign up

Export Citation Format

Share Document