Physiological Demands Related to Exercises in Singing for Lung Health

Author(s):  
2020 ◽  
Author(s):  
Keir EJ Philip ◽  
Adam Lewis ◽  
Sara C Buttery ◽  
Colm McCabe ◽  
Bishman Manivannan ◽  
...  

AbstractParticipating in singing is considered to have a range of social and psychological benefits. However, the physiological demands of singing, whether it can be considered exercise, and its intensity as a physical activity are not well understood. We therefore compared cardiorespiratory parameters while completing components of Singing for Lung Health (SLH) sessions, with treadmill walking at differing speeds (2, 4, and 6km/hr). Eight healthy adults were included, none of whom reported regular participation in formal singing activities. Singing induced physiological responses that were consistent with moderate intensity activity (METS: median 4.12, IQR 2.72 - 4.78), with oxygen consumption, heart rate, and volume per breath above those seen walking at 4km/hr. Minute ventilation was higher during singing (median 22.42L/min, IQR 16.83 - 30.54) than at rest (11L/min, 9 - 13), lower than 6km/hr walking (30.35L/min, 26.94 - 41.11), but not statistically different from 2km/hr (18.77L/min, 16.89 - 21.35) or 4km/hr (23.27L/min, 20.09 - 26.37) walking. Our findings suggest the metabolic demands of singing may contribute to the health and wellbeing benefits attributed to participation. However, if physical training benefits result remains uncertain. Further research including different singing styles, singers, and physical performance impacts when used as a training modality is encouraged.


2020 ◽  
Author(s):  
Keir Philip ◽  
Adam Lewis ◽  
Sara Buttery ◽  
Colm McCabe ◽  
Bishman Manivannan ◽  
...  

Abstract Participating in singing is considered to have a range of social and psychological benefits. However, the physiological demands of singing, whether it can be considered exercise, and its intensity as a physical activity are not well understood. We therefore compared cardiorespiratory parameters while completing components of Singing for Lung Health (SLH) sessions, with treadmill walking at differing speeds (2, 4, and 6km/hr). Eight healthy adults were included, none of whom reported regular participation in formal singing activities. Singing induced physiological responses that were consistent with moderate intensity activity (METS: median 4.12, IQR 2.72 - 4.78), with oxygen consumption, heart rate, and volume per breath above those seen walking at 4km/hr. Minute ventilation was higher during singing (median 22.42L/min, IQR 16.83 - 30.54) than at rest (11L/min, 9 - 13), lower than 6km/hr walking (30.35L/min, 26.94 - 41.11), but not statistically different from 2km/hr (18.77L/min, 16.89 - 21.35) or 4km/hr (23.27L/min, 20.09 - 26.37) walking. Our findings suggest the metabolic demands of singing may contribute to the health and wellbeing benefits attributed to participation. However, if physical training benefits result remains uncertain. Further research including different singing styles, singers, and physical performance impacts when used as a training modality is encouraged.


2021 ◽  
Vol 8 (1) ◽  
pp. e000959
Author(s):  
Keir EJ Philip ◽  
Adam Lewis ◽  
Sara C Buttery ◽  
Colm McCabe ◽  
Bishman Manivannan ◽  
...  

IntroductionParticipating in singing is considered to have a range of social and psychological benefits. However, the physiological demands of singing and its intensity as a physical activity are not well understood.MethodsWe compared cardiorespiratory parameters while completing components of Singing for Lung Health sessions, with treadmill walking at differing speeds (2, 4 and 6 km/hour).ResultsEight healthy adults were included, none of whom reported regular participation in formal singing activities. Singing induced acute physiological responses that were consistent with moderate intensity activity (metabolic equivalents: median 4.12, IQR 2.72–4.78), with oxygen consumption, heart rate and volume per breath above those seen walking at 4 km/hour. Minute ventilation was higher during singing (median 22.42 L/min, IQR 16.83–30.54) than at rest (11 L/min, 9–13), lower than 6 km/hour walking (30.35 L/min, 26.94–41.11), but not statistically different from 2 km/hour (18.77 L/min, 16.89–21.35) or 4 km/hour (23.27 L/min, 20.09–26.37) walking.ConclusionsOur findings suggest the acute metabolic demands of singing are comparable with walking at a moderately brisk pace, hence, physical effects may contribute to the health and well-being benefits attributed to singing participation. However, if physical training benefits result remains uncertain. Further research including different singing styles, singers and physical performance impacts when used as a training modality is encouraged.Trial registration numberClinicalTrials.gov registry (NCT04121351).


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5242
Author(s):  
Jolene Ziyuan Lim ◽  
Alexiaa Sim ◽  
Pui Wah Kong

The aim of this review is to investigate the common wearable devices currently used in field hockey competitions, and to understand the hockey-specific parameters these devices measure. A systematic search was conducted by using three electronic databases and search terms that included field hockey, wearables, accelerometers, inertial sensors, global positioning system (GPS), heart rate monitors, load, performance analysis, player activity profiles, and competitions from the earliest record. The review included 39 studies that used wearable devices during competitions. GPS units were found to be the most common wearable in elite field hockey competitions, followed by heart rate monitors. Wearables in field hockey are mostly used to measure player activity profiles and physiological demands. Inconsistencies in sampling rates and performance bands make comparisons between studies challenging. Nonetheless, this review demonstrated that wearable devices are being used for various applications in field hockey. Researchers, engineers, coaches, and sport scientists can consider using GPS units of higher sampling rates, as well as including additional variables such as skin temperatures and injury associations, to provide a more thorough evaluation of players’ physical and physiological performances. Future work should include goalkeepers and non-elite players who are less studied in the current literature.


CHEST Journal ◽  
1996 ◽  
Vol 109 (2) ◽  
pp. 438-445 ◽  
Author(s):  
Robert P. Murray ◽  
William C. Bailey ◽  
Kathleen Daniels ◽  
Wendy M. Bjornson ◽  
Karole Kurnow ◽  
...  
Keyword(s):  

Author(s):  
Xuhai Xu ◽  
Ebrahim Nemati ◽  
Korosh Vatanparvar ◽  
Viswam Nathan ◽  
Tousif Ahmed ◽  
...  

The prevalence of ubiquitous computing enables new opportunities for lung health monitoring and assessment. In the past few years, there have been extensive studies on cough detection using passively sensed audio signals. However, the generalizability of a cough detection model when applied to external datasets, especially in real-world implementation, is questionable and not explored adequately. Beyond detecting coughs, researchers have looked into how cough sounds can be used in assessing lung health. However, due to the challenges in collecting both cough sounds and lung health condition ground truth, previous studies have been hindered by the limited datasets. In this paper, we propose Listen2Cough to address these gaps. We first build an end-to-end deep learning architecture using public cough sound datasets to detect coughs within raw audio recordings. We employ a pre-trained MobileNet and integrate a number of augmentation techniques to improve the generalizability of our model. Without additional fine-tuning, our model is able to achieve an F1 score of 0.948 when tested against a new clean dataset, and 0.884 on another in-the-wild noisy dataset, leading to an advantage of 5.8% and 8.4% on average over the best baseline model, respectively. Then, to mitigate the issue of limited lung health data, we propose to transform the cough detection task to lung health assessment tasks so that the rich cough data can be leveraged. Our hypothesis is that these tasks extract and utilize similar effective representation from cough sounds. We embed the cough detection model into a multi-instance learning framework with the attention mechanism and further tune the model for lung health assessment tasks. Our final model achieves an F1-score of 0.912 on healthy v.s. unhealthy, 0.870 on obstructive v.s. non-obstructive, and 0.813 on COPD v.s. asthma classification, outperforming the baseline by 10.7%, 6.3%, and 3.7%, respectively. Moreover, the weight value in the attention layer can be used to identify important coughs highly correlated with lung health, which can potentially provide interpretability for expert diagnosis in the future.


2010 ◽  
Vol 427 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Catherine Johnson ◽  
Sandra Crowther ◽  
Margaret J. Stafford ◽  
David G. Campbell ◽  
Rachel Toth ◽  
...  

More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands.


Sign in / Sign up

Export Citation Format

Share Document