Comparative FK506 Drug Levels of Once Daily Advagraf in First Nations and Caucasian Patients With Liver Transplants

Author(s):  
BMJ ◽  
1977 ◽  
Vol 2 (6086) ◽  
pp. 579-579
Author(s):  
I H Stevenson ◽  
A A Schiff

1982 ◽  
Vol 77 (4) ◽  
pp. 344-347 ◽  
Author(s):  
J. E. Burch ◽  
D. M. Shaw ◽  
A. Michalakeas ◽  
B. Karajgi ◽  
S. G. Roberts ◽  
...  

Author(s):  
James Dow ◽  
Graham Trevitt ◽  
Elisabeth Bone ◽  
Kemal Haque ◽  
Loretta Nastoupil

Aims: KA2237, an oral, potent and selective, inhibitor of the PI3K β and δ isoforms, was evaluated for safety, tolerability and pharmacokinetics (PK) in patients with B-cell lymphoma. KA2237 is metabolised by CYP3A4/5 but also demonstrated mechanism-based inhibition (MBI) of CYP3A4/5. An MBI mechanistic dynamic model was used to predict drug accumulation after repeat dosing of KA2237. This model, along with clinical safety data, was used to guide safe dose escalation. Methods: An open-label, single arm, dose escalation study was carried out in patients, dosed orally with KA2237 at 50, 100, 200 and 400 mg once daily. Complete plasma profiles were obtained on Day 1 and Day 14 of dosing and pre-dose (Cmin) samples were obtained on Days 2-7. The MBI model was validated and used to calculate drug levels and predict potential drug accumulation during dose escalation. Results: KA2237 elimination half-life was around 20-30 h, compatible with once daily dosing regimens. The accumulation of KA2237 was around 4-fold after the highest dose of 400 mg and around 3-fold after administration of 200 mg, which is considered the maximum tolerated dose (MTD). The MBI model accurately predicted this accumulation. Conclusions: Drugs that demonstrate MBI and potential auto-inhibition can be successfully developed, provided that models are developed to assess the extent of accumulation prior to the start of FIH clinical studies. This, along with the close monitoring of drug levels and clinical safety data can be used to guide dose escalation and lead to the safe conduct of clinical studies.


Author(s):  
I.C. Murray

In women, hyperprolactinemia is often due to a prolactin (PRL)-secreting adenoma or PRL cell hyperplasia. RRL excess stimulates the mammary glands and causes proliferation of the alveolar epithelium. Bromocriptine, a dopamine agonist, inhibits PRL secretion and is given to women to treat nonpuerperal galactorrhea. Old female rats have been reported to have PRL cell hyperplasia or adenoma leading to PRL hypersecretion and breast stimulation. Herein, we describe the effect of bromocriptine and consequently the reduction in serum PRL levels on the ultrastructure of rat mammary glands.Female Long-Evans rats, 23 months of age, were divided into control and bromocriptine-treated groups. The control animals were injected subcutaneously once daily with a 10% ethanol vehicle and were later divided into a normoprolactinemic control group with serum PRL levels under 30 ng/ml and a hyperprolactinemic control group with serum PRL levels above 30 ng/ml.


Author(s):  
J.E. Michaels ◽  
S.A. Garfield ◽  
J.T. Hung ◽  
S.S. Smith ◽  
R.R. Cardell

3H-galactose (gal) and 3H-glucose (glu) were compared to determine which compound was preferable for pulse labeling newly formed hepatic glycogen. Control fed rats were used to achieve substantial and consistent levels of hepatic glycogen and to stimulate glycogen synthesis.Rats fed once daily for 4 hr achieved hepatic glycogen levels > 3% wet weight liver prior to injection by tail vein of a tracer dose of 3H-gal or 3H-glu. The rats were sacrificed 15-120 min later and liver was prepared by routine techniques for light (LM) and electron microscopic (EM) radioautography (RAG) and biochemical analysis.


Sign in / Sign up

Export Citation Format

Share Document