scholarly journals A Generally Covariant Theory of Quantized Dirac Field in de Sitter Spacetime

2021 ◽  
Vol 2021 ◽  
Author(s):  
Sze-Shiang Feng ◽  
◽  
Mogus Mochena ◽  
2007 ◽  
Vol 22 (34) ◽  
pp. 2573-2585 ◽  
Author(s):  
COSMIN CRUCEAN

The lowest order contribution of the amplitude of the Dirac–Coulomb scattering in de Sitter spacetime is calculated assuming that the initial and final states of the Dirac field are described by exact solutions of the free Dirac equation on de Sitter spacetime with a given momentum and helicity. One studies the difficulties that arises when one passes from the amplitude to cross section.


Author(s):  
Sourav Bhattacharya ◽  
Shankhadeep Chakrabortty ◽  
Shivang Goyal

Abstract We report a non-trivial feature of the vacuum structure of free massive or massless Dirac fields in the hyperbolic de Sitter spacetime. Here we have two causally disconnected regions, say R and L separated by another region, C. We are interested in the field theory in $$R\cup L$$R∪L to understand the long range quantum correlations between R and L. There are local modes of the Dirac field having supports individually either in R or L, as well as global modes found via analytically continuing the R modes to L and vice versa. However, we show that unlike the case of a scalar field, the analytic continuation does not preserve the orthogonality of the resulting global modes. Accordingly, we need to orthonormalise them following the Gram–Schmidt prescription, prior to the field quantisation in order to preserve the canonical anti-commutation relations. We observe that this prescription naturally incorporates a spacetime independent continuous parameter, $$\theta _{\mathrm{RL}}$$θRL, into the picture. Thus interestingly, we obtain a naturally emerging one-parameter family of $$\alpha $$α-like de Sitter vacua. The values of $$\theta _{\mathrm{RL}}$$θRL yielding the usual thermal spectra of massless created particles are pointed out. Next, using these vacua, we investigate both entanglement and Rényi entropies of either of the regions and demonstrate their dependence on $$\theta _{\mathrm{RL}}$$θRL.


2006 ◽  
Vol 21 (16) ◽  
pp. 1313-1318 ◽  
Author(s):  
ION I. COTĂESCU ◽  
RADU RACOCEANU ◽  
COSMIN CRUCEAN

The Shishkin's solutions of the Dirac equation in spherical moving frames of the de Sitter spacetime are investigated pointing out the set of commuting operators whose eigenvalues determine the integration constants. It is shown that these depend on the usual angular quantum numbers and, in addition, on the value of the scalar momentum. With these elements a new result is obtained finding the system of solutions normalized (in generalized sense) in the scale of scalar momentum.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hiroshi Isono ◽  
Hoiki Madison Liu ◽  
Toshifumi Noumi

Abstract We study wavefunctions of heavy scalars on de Sitter spacetime and their implications to dS/CFT correspondence. In contrast to light fields in the complementary series, heavy fields in the principal series oscillate outside the cosmological horizon. As a consequence, the quadratic term in the wavefunction does not follow a simple scaling and so it is hard to identify it with a conformal two-point function. In this paper, we demonstrate that it should be interpreted as a two-point function on a cyclic RG flow which is obtained by double-trace deformations of the dual CFT. This is analogous to the situation in nonrelativistic AdS/CFT with a bulk scalar whose mass squared is below the Breitenlohner-Freedman (BF) bound. We also provide a new dS/CFT dictionary relating de Sitter two-point functions and conformal two-point functions in the would-be dual CFT.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
E. T. Akhmedov ◽  
A. A. Artemev ◽  
I. V. Kochergin

Sign in / Sign up

Export Citation Format

Share Document