scholarly journals Three-Dimensional Flow Velocity Vector Measurement Based on Spatio-Temporal Correlation

1990 ◽  
Vol 10 (1Supplement) ◽  
pp. 103-106
Author(s):  
Ichiro KIMURA ◽  
Yoshiharu KOHNO ◽  
Toshi TAKAMORI
2009 ◽  
Vol 643 ◽  
pp. 349-362 ◽  
Author(s):  
DAVID LO JACONO ◽  
JUSTIN S. LEONTINI ◽  
MARK C. THOMPSON ◽  
JOHN SHERIDAN

A study of the flow past an oscillatory rotating cylinder has been conducted, where the frequency of oscillation has been matched to the natural frequency of the vortex street generated in the wake of a stationary cylinder, at Reynolds number 300. The focus is on the wake transition to three-dimensional flow and, in particular, the changes induced in this transition by the addition of the oscillatory rotation. Using Floquet stability analysis, it is found that the fine-scale three-dimensional mode that typically dominates the wake at a Reynolds number beyond that at the second transition to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of rotation beyond a critical amplitude, in agreement with past studies. However, the rotation does not suppress the development of three-dimensionality completely, as other modes are discovered that would lead to three-dimensional flow. In particular, the longer-wavelength mode that leads the three-dimensional transition in the wake of a stationary cylinder (referred to as mode A) is left essentially unaffected at low amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed as the two-dimensional near wake changes in character from a single- to a double-row wake; however, another mode is predicted to render the flow three-dimensional, dubbed mode D (for double row). This mode has the same spatio-temporal symmetries as mode A.


2008 ◽  
Vol 605 ◽  
pp. 253-262 ◽  
Author(s):  
A. R. SHENOY ◽  
C. KLEINSTREUER

Computation of viscous flow over a circular disk of aspect ratio 10 (thickness/diameter) in the Reynolds number (Re) range of 10 to 300 was performed. The following flow regimes were observed: (I) steady axisymmetric flow when Re < 135, with the presence of a toroidal vortex behind the disk; (II) regular bifurcation with loss of azimuthal symmetry but with planar symmetry and a double-threaded wake, for 135 ≤ Re < 155; (III) three-dimensional flow with periodic shedding of double-sided hairpin-shaped vortex structures and periodic motion of the separation region for 155 ≤ Re < 172; (IV) regular shedding of double-sided hairpin-shaped vortex structures with planar and spatio-temporal symmetry for 172 ≤ Re < 280; (V) periodic three-dimensional flow with irregular rotation of the separation region when Re = 280–300. This transition process for the disk differs from that for the sphere as we observe a loss of the symmetry plane in Regime III due to a twisting motion of the axial vorticity strands in the wake of the disk. The periodic flow was characterized by double-sided hairpin structures, unlike the one-sided vortex loops observed for the sphere. This resulted in the drag coefficient oscillating at twice the frequency of the axial velocity. In Regime IV, the vortex loops were shed from diametrically opposite locations and with equal strength, resulting in the lift coefficient oscillating symmetrically about a zero mean. These results imply the presence of spatio-temporal symmetry.


1987 ◽  
Vol 109 (2) ◽  
pp. 163-169 ◽  
Author(s):  
M. F. Malak ◽  
A. Hamed ◽  
W. Tabakoff

The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.


1984 ◽  
Vol 106 (2) ◽  
pp. 516-522 ◽  
Author(s):  
W. Tabakoff ◽  
B. V. R. Vittal ◽  
B. Wood

A study was conducted to determine experimentally the flow behavior in combined scroll nozzle assembly of a radial inflow turbine. Hot film anemometry technique was used to measure the three-dimensional flow velocity in the scroll. The through-flow and secondary flow velocity components are measured at various points in three scroll sections.


Sign in / Sign up

Export Citation Format

Share Document