Dynamics of interphase interaction between components during mixing

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
I Stadnyk ◽  
◽  
V Sarana ◽  
M Mushtruk ◽  
V Vasyliv ◽  
...  

The processes of mixing, whipping, and foaming are essentially uniform and consist in dispersing the gas in a liquid. When mixing and whipping, the mixture of components is swollen due to the mechanical action; increased in volume water-insoluble protein substances (gluten proteins) form a three-dimensional spongy mesh continuous structure. It is called a gluten frame. It determines the elastic and resilient properties of the medium. Therefore, the purpose of the study is to establish the relationship between the gas holding capacity of the medium and the energy expended on the hydration of the components. The study solves the task of determining the gas holding capacity of the medium with variable parameters of the height of the liquid phase from the mixing intensity, the duration of transient processes for the formation of the full volume of the gas-liquid medium, the duration of the transient process for the dispersed gas phase yield. The difference between the levels before the gas phase formation and during the mixing (aeration) mode determines the value of the gas holding capacity. In this context, we concluded that it is expedient to completely destabilize the established modes by changing the operating modes in the working body in the flow system. An additional effect on the system is the change of hydrodynamic regimes due to the unstable dynamics of the dispersed gas phase formation. The generation of the dispersed gas phase means the presence of energy expenditure on the interphase layer formation, which should be considered in the total energy balance. At the same time, another feature should be mentioned. Part of the gas phase, which existed and continues to exist in the new mode after mixing, enters the mode of a transient process. Therefore, the most effective mixing occurs while adhering to the shifted mode for dosing components in a suspended state and the mechanical impact of the working body. Based on the given objectives and conditions of sponge dough mixing, we determined the requirements for the mixer design and found that the supply of components should last at least 45 seconds. During this period, hydration occurs and energy consumption is declining.

In recent years many important theoretical advances have been made in the application of quantum statistics to adsorption problems. Fowler (1935), adopting the Langmuir picture of a monomolecular adsorbed gas layer, derived from purely statistical considerations the equation p = ( θ /1- θ ) ((2 πm ) 3/2 ( kT ) 5/2 )/ h 3 ( b g ( T )/ v s ( T ) e -x/kT , in which the undetermined constants of Langmuir’s original equation (1918) are given explicitly in terms of the partition functions, b g ( T ) and v s ( T ) belonging to atoms in the gas phase and in the adsorbed layer respectively and x , which is the difference in energy of an atom in the gas phase and in the lowest adsorption level on the surface. In subsequent developments the change in the energy of adsorption as a function of θ (the fraction of the surface covered) has been introduced in the above equation using ( a ) the Bragg and Williams approximations (Fowler 1936 a ) and ( b ) the Bethe method (Peierls 1936) to determine the configurational energy. Further applications and extensions of these methods to special adsorption problems have been carried through by Roberts (1937) and by Wang (1937), and Rushbrooke (1938) has examined the validity of the assumption, which is implicit in all this work, namely, that v s ( T ) is independent of the configuration. In addition, an approach to the solution of the statistical configuration problem when molecules condense in two layers simultaneously has recently been made by Cernuschi (1938) and developed by Dube (1938). In order to evaluate correctly the summations v s ( T ) occurring in equation (1), the Schrödinger equation for an atom moving in the three-dimensional potential field of the substrate should be solved, but this has so far proved prohibitively difficult. In the past it has been customary, and for practical purposes it is possibly generally sufficient, to substitute classical partition functions for these summations.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, are calculated the gas formation enthalpies (SE; PM3 and PM6) for tin borates: SnB<sub>2</sub>O<sub>4</sub><sup> </sup>and Sn<sub>2</sub>B<sub>2</sub>O<sub>5</sub>. The calculated values are compared with experimental ones, obtained by Knudsen effusion mass spectrometry [3]. It is shown that SE methods, besides their lower computational time consuming can, indeed, provide reliable gas phase formation enthalpy values for inorganic compounds containing heavy metals.</p>


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, a computational study is performed in order to clarify the possible magnetic nature of gold. For such purpose, gas phase Au<sub>2</sub> (zero charge) is modelled, in order to calculate its gas phase formation enthalpy. The calculated values were compared with the experimental value obtained by means of Knudsen effusion mass spectrometric studies [5]. Based on the obtained formation enthalpy values for Au<sub>2</sub>, the compound with two unpaired electrons is the most probable one. The calculated ionization energy of modelled Au<sub>2</sub> with two unpaired electrons is 8.94 eV and with zero unpaired electrons, 11.42 eV. The difference (11.42-8.94 = 2.48 eV = 239.29 kJmol<sup>-1</sup>), is in very good agreement with the experimental value of 226.2 ± 0.5 kJmol<sup>-1</sup> to the Au-Au bond<sup>7</sup>. So, as expected, in the specie with none unpaired electrons, the two 6s<sup>1</sup> (one of each gold atom) are paired, forming a chemical bond with bond order 1. On the other hand, in Au<sub>2</sub> with two unpaired electrons, the s-d hybridization prevails, because the relativistic contributions. A molecular orbital energy diagram for gas phase Au<sub>2</sub> is proposed, explaining its paramagnetism (and, by extension, the paramagnetism of gold clusters and nanoparticles).</p>


1983 ◽  
Vol 218 (1210) ◽  
pp. 119-126 ◽  

The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 ņ from the intersubunit interface. The total iron content of the dimer is 1.2±0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 Å electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apoenzyme are identical.


2021 ◽  
Vol 503 (3) ◽  
pp. 3309-3325
Author(s):  
Sabine Bellstedt ◽  
Aaron S G Robotham ◽  
Simon P Driver ◽  
Jessica E Thorne ◽  
Luke J M Davies ◽  
...  

ABSTRACT We analyse the metallicity histories of ∼4500 galaxies from the GAMA survey at z &lt; 0.06 modelled by the SED-fitting code ProSpect using an evolving metallicity implementation. These metallicity histories, in combination with the associated star formation histories, allow us to analyse the inferred gas-phase mass–metallicity relation. Furthermore, we extract the mass–metallicity relation at a sequence of epochs in cosmic history, to track the evolving mass–metallicity relation with time. Through comparison with observations of gas-phase metallicity over a large range of redshifts, we show that, remarkably, our forensic SED analysis has produced an evolving mass–metallicity relationship that is consistent with observations at all epochs. We additionally analyse the three-dimensional mass–metallicity–SFR space, showing that galaxies occupy a clearly defined plane. This plane is shown to be subtly evolving, displaying an increased tilt with time caused by general enrichment, and also the slowing down of star formation with cosmic time. This evolution is most apparent at lookback times greater than 7 Gyr. The trends in metallicity recovered in this work highlight that the evolving metallicity implementation used within the SED-fitting code ProSpect produces reasonable metallicity results over the history of a galaxy. This is expected to provide a significant improvement to the accuracy of the SED-fitting outputs.


2008 ◽  
Vol 47 (47) ◽  
pp. 9118-9121 ◽  
Author(s):  
Charlene C. L. Thum ◽  
George N. Khairallah ◽  
Richard A. J. O'Hair
Keyword(s):  

1996 ◽  
Vol 10 (28) ◽  
pp. 1397-1406 ◽  
Author(s):  
AXEL VÖLKER ◽  
PETER KOPIETZ

We use the Lanczos method to calculate the variance σ2(E, ϕ) of the number of energy levels in an energy window of width E below the Fermi energy for noninteracting disordered electrons on a thin three-dimensional ring threaded by an Aharonov–Bohm flux ϕ. We confirm numerically that for small E the flux-dependent part of σ2(E, ϕ) is well described by the Altshuler–Shklovskii-diagram involving two Cooperons. However, in the absence of electron–electron interactions this result cannot be extrapolated to energies E where the energy-dependence of the average density of states becomes significant. We discuss consequences for persistent currents and argue that for the calculation of the difference between the canonical- and grand canonical current it is crucial to take the electron–electron interaction into account.


Sign in / Sign up

Export Citation Format

Share Document