Explaining the magnetism of gold

Author(s):  
Robson de Farias

<p>In the present work, a computational study is performed in order to clarify the possible magnetic nature of gold. For such purpose, gas phase Au<sub>2</sub> (zero charge) is modelled, in order to calculate its gas phase formation enthalpy. The calculated values were compared with the experimental value obtained by means of Knudsen effusion mass spectrometric studies [5]. Based on the obtained formation enthalpy values for Au<sub>2</sub>, the compound with two unpaired electrons is the most probable one. The calculated ionization energy of modelled Au<sub>2</sub> with two unpaired electrons is 8.94 eV and with zero unpaired electrons, 11.42 eV. The difference (11.42-8.94 = 2.48 eV = 239.29 kJmol<sup>-1</sup>), is in very good agreement with the experimental value of 226.2 ± 0.5 kJmol<sup>-1</sup> to the Au-Au bond<sup>7</sup>. So, as expected, in the specie with none unpaired electrons, the two 6s<sup>1</sup> (one of each gold atom) are paired, forming a chemical bond with bond order 1. On the other hand, in Au<sub>2</sub> with two unpaired electrons, the s-d hybridization prevails, because the relativistic contributions. A molecular orbital energy diagram for gas phase Au<sub>2</sub> is proposed, explaining its paramagnetism (and, by extension, the paramagnetism of gold clusters and nanoparticles).</p>

2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, a computational study is performed in order to clarify the possible magnetic nature of gold. For such purpose, gas phase Au<sub>2</sub> (zero charge) is modelled, in order to calculate its gas phase formation enthalpy. The calculated values were compared with the experimental value obtained by means of Knudsen effusion mass spectrometric studies [5]. Based on the obtained formation enthalpy values for Au<sub>2</sub>, the compound with two unpaired electrons is the most probable one. The calculated ionization energy of modelled Au<sub>2</sub> with two unpaired electrons is 8.94 eV and with zero unpaired electrons, 11.42 eV. The difference (11.42-8.94 = 2.48 eV = 239.29 kJmol<sup>-1</sup>), is in very good agreement with the experimental value of 226.2 ± 0.5 kJmol<sup>-1</sup> to the Au-Au bond<sup>7</sup>. So, as expected, in the specie with none unpaired electrons, the two 6s<sup>1</sup> (one of each gold atom) are paired, forming a chemical bond with bond order 1. On the other hand, in Au<sub>2</sub> with two unpaired electrons, the s-d hybridization prevails, because the relativistic contributions. A molecular orbital energy diagram for gas phase Au<sub>2</sub> is proposed, explaining its paramagnetism (and, by extension, the paramagnetism of gold clusters and nanoparticles).</p>


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3827
Author(s):  
Vera L. S. Freitas ◽  
Maria D. M. C. Ribeiro da Silva

The energy involved in the structural switching of acyl and hydroxyl substituents in the title compounds was evaluated combining experimental and computational studies. Combustion calorimetry and Knudsen effusion techniques were used to determine the enthalpies of formation, in the crystalline state, and of sublimation, respectively. The gas-phase enthalpy of formation of both isomers was derived combining these two experimental data. Concerning the computational study, the G3(MP2)//B3LYP composite method was used to optimize and determine the energy of the isomers in the gaseous state. From a set of hypothetical reactions it has been possible to estimate the gas-phase enthalpy of formation of the title compounds. The good agreement between the experimental and computational gas-phase enthalpies of formation of the 1-acetyl-2-naphthol and 2-acetyl-1-naphthol isomers, provided the confidence for extending the computational study to the 2-acetyl-3-naphthol isomer. The structural rearrangement of the substituents in position 1 and 2 in the naphthalene ring and the energy of the intramolecular hydrogen bond are the factors responsible for the energetic differences exhibited by the isomers. The gas phase tautomeric keto ↔ enol equilibria of the o-acetylnaphthol isomers were analyzed using the Boltzmann’s distribution.


2003 ◽  
Vol 765 ◽  
Author(s):  
Chun-Li Liu ◽  
Marius Orlowski ◽  
Aaron Thean ◽  
Alex Barr ◽  
Ted White ◽  
...  

AbstractStrained Si-based technology has imposed a new challenge for understanding dopant implantation and diffusion in SiGe that is often used as the buffer layer for a strained Si cap layer. In this work, we describe our latest modeling effort investigating the difference in dopant implantation and diffusion between Si and SiGe. A lattice expansion theory was developed to account for the volume change due to Ge in Si and its effect on defect formation enthalpy. The theory predicts that As diffusion in SiGe is enhanced by a factor of ∼10, P diffusion by a factor of ∼2, and B diffusion is retarded by a factor of ∼6, when compared to bulk Si. These predictions are consistent with experiment. Dopant profiles for As, P, and B were simulated using process simulators FLOOPS and DIOS. The simulated profiles are in good agreement with experiment.


2018 ◽  
Author(s):  
Moyassar Meshhal ◽  
Safinaz El-Demerdash ◽  
Ahmed El-Nahas

Ab initio CBS-QB3 method has been used to determine gas-phase enthalpies of formation for 34 compounds including a number of hydroxyquinoline isomers, the corresponding azulene analogues and their parent systems. The mean absolute deviation of 4.43 kJ/mol reveals good agreement between our results and the available experimental data. Relative thermodynamic stabilities of hydroxyquinoline isomers and related analogues were discussed and several isomerization reactions enthalpies were derived. The same level of theory has also been utilized to calculate adiabatic ionization energies and electron affinities for the molecules with known experimental values and the agreement between theory and experiment was found to be within 8 kJ/mol.


2018 ◽  
Author(s):  
Moyassar Meshhal ◽  
Safinaz El-Demerdash ◽  
Ahmed El-Nahas

Ab initio CBS-QB3 method has been used to determine gas-phase enthalpies of formation for 34 compounds including a number of hydroxyquinoline isomers, the corresponding azulene analogues and their parent systems. The mean absolute deviation of 4.43 kJ/mol reveals good agreement between our results and the available experimental data. Relative thermodynamic stabilities of hydroxyquinoline isomers and related analogues were discussed and several isomerization reactions enthalpies were derived. The same level of theory has also been utilized to calculate adiabatic ionization energies and electron affinities for the molecules with known experimental values and the agreement between theory and experiment was found to be within 8 kJ/mol.


Author(s):  
V.P. Bondarenko ◽  
O.O. Matviichuk

Detail investigation of equilibrium chemical reactions in WO3–H2O system using computer program FacktSage with the aim to establish influence of temperature and quantity of water on formation of compounds of H2WO4 and WO2(OH)2 as well as concomitant them compounds, evaporation products, decomposition and dissociation, that are contained in the program data base were carried out. Calculations in the temperature range from 100 to 3000 °С were carried out. The amount moles of water added to 1 mole of WO3 was varied from 0 to 27. It is found that the obtained data by the melting and evaporation temperatures of single-phase WO3 are in good agreement with the reference data and provide additionally detailed information on the composition of the gas phase. It was shown that under heating of 1 mole single-phase WO3 up to 3000 °С the predominant oxide that exist in gaseous phase is (WO3)2. Reactions of it formation from other oxides ((WO3)3 and (WO3)4) were proposed. It was established that compound H2WO4 is stable and it is decomposed on WO3 and H2O under 121 °C. Tungsten Oxide Hydrate WO2(OH)2 first appears under 400 °С and exists up to 3000 °С. Increasing quantity of Н2О in system leads to decreasing transition temperature of WO3 into both liquid and gaseous phases. It was established that adding to 1 mole WO3 26 mole H2O maximum amount (0,9044–0,9171 mole) WO2(OH)2 under temperatures 1400–1600 °С can be obtained, wherein the melting stage of WO3 is omitted. Obtained data also allowed to state that that from 121 till 400 °С WO3–Н2O the section in the О–W–H ternary system is partially quasi-binary because under these temperatures in the system only WO3 and Н2O are present. Under higher temperatures WO3–Н2O section becomes not quasi-binary since in the reaction products WO3 with Н2O except WO3 and Н2O, there are significant amounts of WO2(OH)2, (WO3)2, (WO3)3, (WO3)4 and a small amount of atoms and other compounds. Bibl. 12, Fig. 6, Tab. 5.


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, are calculated the gas formation enthalpies (SE; PM3 and PM6) for tin borates: SnB<sub>2</sub>O<sub>4</sub><sup> </sup>and Sn<sub>2</sub>B<sub>2</sub>O<sub>5</sub>. The calculated values are compared with experimental ones, obtained by Knudsen effusion mass spectrometry [3]. It is shown that SE methods, besides their lower computational time consuming can, indeed, provide reliable gas phase formation enthalpy values for inorganic compounds containing heavy metals.</p>


2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


2020 ◽  
Vol 17 (11) ◽  
pp. 884-889
Author(s):  
Somayeh Mirdoraghi ◽  
Hamed Douroudgari ◽  
Farideh Piri ◽  
Morteza Vahedpour

For (Z)-(Z)-N-(λ5-phosphanylidene) formohydrazonic formic anhydride, Aza-Wittig reaction and Mumm rearrangement are studied using both density functional and coupled cluster theories. For this purpose, two different products starting from one substrate are considered that are competing with each other. The obtained products, P1 and P2, are thermodynamically favorable. The product of the aza-Wittig reaction, P1, is more stable than the product of Mumm rearrangement (P2). For the mentioned products, just one reliable pathway is separately proposed based on unimolecular reaction. Therefore, the rate constants based on RRKM theory in 300-600 K temperature range are calculated. Results show that the P1 generation pathway is a suitable path due to low energy barriers than the path P2. The first path has three steps with three transition states, TS1, TS2, and TS3. The P2 production path is a single-step reaction. In CCSD level, the computed barrier energies are 14.55, 2.196, and 10.67 kcal/mol for Aza-Wittig reaction and 42.41 kcal/mol for Mumm rearrangement in comparison with the corresponding complexes or reactants. For final products, the results of the computational study are in a good agreement with experimental predictions.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


Sign in / Sign up

Export Citation Format

Share Document