Efficiency of formation and functioning of the symbiotic soybean system with glyphosate treatment

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
I. Gumeniuk ◽  
◽  
A. Levishko ◽  
O. Demyanyuk ◽  
◽  
...  

The efficiency of the formation and functioning of the soybean symbiotic system during the crops treatment with glyphosate and pre-sowing seed inoculation with different strains of Bradyrhizobium in the field studied. It is known, that glyphosate can affect symbiotic nitrogen fixation through direct action on rhizobia and symbiotic formations, we took plant samples for analysis after four weeks of glyphosate treatment and determined the aboveground mass of plants and symbiotic apparatus formation evaluated by the number of nodules, their mass and nitrogen fixation activity. It was shown that the late treatment (35 days after sowing) with glyphosate does not provide a sufficient level of weed control and under such conditions inhibits the development and growth of soybean plants, reduces the growth of aboveground and root mass. Treatment of plants with glyphosate before the formation of symbiotic apparatus (21 days after sowing) reduces nitrogen fixation activity by 3550%, but it does not have a significant effect on the formation of soybean yield. The obtained results confirmed the hypothesis of intensification of the nitrogen complex during late treatment of plants with glyphosate in plants inoculated with Bradyrhizobium japonicum strain EL-35 and the composition of strains of B. japonicum EM-24 and B. japonicum EL-35. The most effective for inoculation of soybean plants was a mixture of the studied strains of B. japonicum EM-24 and B. japonicum EL-35, which provides high nitrogen fixation activity and productivity. Therefore, to reduce the negative impact of glyphosate on the nitrogen fixation activity of symbiotic systems and to obtain high soybean productivity, it is necessary to select rhizobia strains with a high rate of symbiotic system formation, because even a slight decrease in nitrogen fixation can have long-term negative consequences.

2021 ◽  
Author(s):  
Mykhaylo Paduchak ◽  
Viktor Dudzych ◽  
Anatolii Boiko

Abstract Avoiding of negative impact of slurry contact with productive sections by utilization of swellable pakers well completion systems as a key solution for depleted reservoirs. Results are compared to previously used classic well completion method with production casing cementing The new method of the well completion is based on a long period and many wells operations within Svyrydivske field in Dnipro-Donets Basin (here and after DDB). Precise selection of hybrid, oil and water based elastomers and correct placement in the appropriate hole zones for water and sectional isolation together with oil based mud utilization during drilling have provided stable production in depleted reservoirs and have minimized negative consequences from water filtration. The results achieved and the well completion method are described in detail to allow readers to replicate all results in a comparable geological conditions in DDB. Current well completion method has a couple of outstanding results achieved: –well integrity barrier is based on sufficient differential pressure provided by swellable packers;–reliable long term water isolation of all detected water contained intervals;–the production sections are not polluted by slurry filtrated water;–increased production rate comparing to cemented wells;–no risks of slurry loss during well cementing. This technology has been successfully implemented in both vertical and deviated wells on 4.5″ (114.3 mm) casing OD, in the interval 5100-5450 meters, bottom hole temperature 120-135°C. The differential pressure provided by swellable packer is up to 10,000 PSI (68.9 MPa). Fluid reactive packers are ready to expand and isolate highly cavernous hole sections and keep differential pressure sustainably. To achieve the best results with this well completion method, it is also important to use reliable gas tight casing connections and know precise reservoir characteristics. That is why the technology is recommended to be customized for well known brownfield reservoirs with high rate of depletion. The main benefit of the well completion method is a proved and safe technical solution for mainly depleted deep gas and condensate deposits in DDB (Ukraine) with sensitive economics


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Manabu Tobisa ◽  
Masataka Shimojo ◽  
Yasuhisa Masuda

We investigated the root distribution and nitrogen fixation activity of American jointvetch (Aeschynomene americanaL.) cv. Glenn, under waterlogging treatment. The plants were grown in pots under three different treatments: no waterlogging (control), 30 days of waterlogging (experiment 1), and 40 days of waterlogging (experiment 2). The plants were subjected to the treatments on day 14 after germination. Root dry matter (DM) weight distribution of waterlogged plants was shallower than controls after day 20 of waterlogging. Throughout the study period, the total root DM weight in waterlogged plants was similar to that in the controls. Enhanced rooting (adventitious roots) and nodule formation at the stem base were observed in waterlogged plants after day 20 of waterlogging. The average DM weight of individual nodules on the region of the stem between the soil surface and water surface of waterlogged plants was similar to that of individual taproot nodules in the controls. Waterlogged plants had slightly greater plant DM weight than the controls after 40 days of treatment. The total nitrogenase activity (TNA) of nodules and nodule DM weight were higher in waterlogged plants than in the controls. Waterlogged American jointvetch had roots with nodules both around the soil surface and in the area between the soil surface and water surface after 20 days of waterlogging, and they maintained high nitrogenase activity and net assimilation rate that resulted in an increased growth rate.


2011 ◽  
Vol 52 (No. 10) ◽  
pp. 435-440 ◽  
Author(s):  
M. Geneva ◽  
G. Zehirov ◽  
E. Djonova ◽  
N. Kaloyanova ◽  
G. Georgiev ◽  
...  

The study evaluated the response of pea (Pisum sativum cv. Avola) to arbuscular mycorrhizal fungi (AM) species Glomus mosseae and Glomus intraradices and Rhizobium leguminosarum bv. viceae, strain D 293, regarding the growth, photosynthesis, nodulation and nitrogen fixation activity. Pea plants were grown in a glasshouse until the flowering stage (35 days), in 4 kg plastic pots using leached cinnamonic forest soil (Chromic Luvisols – FAO) at P levels 13.2 (P1) and 39.8 (P2) mg P/kg soil. The obtained results demonstrated that the dual inoculation of pea plants significantly increased the plant biomass, photosynthetic rate, nodulation, and nitrogen fixation activity in comparison with single inoculation with Rhizobium leguminosarum bv. viceae strain D 293. On the other hand, coinoculation significantly increased the total phosphorus content in plant tissue, acid phosphatase activity and percentage of root colonization. The effectiveness of coinoculation with Rhizobium leguminosarum and Glomus mosseae was higher at the low phosphorus level while the coinoculation with Glomus intraradices appeared to be the most effective at higher phosphorus level.


2019 ◽  
Vol 32 (9) ◽  
pp. 1196-1209
Author(s):  
Zaiyong Si ◽  
Qianqian Yang ◽  
Rongrong Liang ◽  
Ling Chen ◽  
Dasong Chen ◽  
...  

Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.


2020 ◽  
pp. PBIOMES-09-19-0
Author(s):  
Rahul A. Bahulikar ◽  
Srinivasa R. Chaluvadi ◽  
Ivone Torres-Jerez ◽  
Jagadish Mosali ◽  
Jeffrey L. Bennetzen ◽  
...  

2007 ◽  
Vol 189 (24) ◽  
pp. 9050-9056 ◽  
Author(s):  
Chunxia Wang ◽  
Xiaoyan Sheng ◽  
Raymie C. Equi ◽  
Maria A. Trainer ◽  
Trevor C. Charles ◽  
...  

ABSTRACT Sinorhizobium meliloti cells store excess carbon as intracellular poly-3-hydroxybutyrate (PHB) granules that assist survival under fluctuating nutritional conditions. PHB granule-associated proteins (phasins) are proposed to regulate PHB synthesis and granule formation. Although the enzymology and genetics of PHB metabolism in S. meliloti have been well characterized, phasins have not yet been described for this organism. Comparison of the protein profiles of the wild type and a PHB synthesis mutant revealed two major proteins absent from the mutant. These were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as being encoded by the SMc00777 (phaP1) and SMc02111 (phaP2) genes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins associated with PHB granules followed by MALDI-TOF confirmed that PhaP1 and PhaP2 were the two major phasins. Double mutants were defective in PHB production, while single mutants still produced PHB, and unlike PHB synthesis mutants that have reduced exopolysaccharide, the double mutants had higher exopolysaccharide levels. Medicago truncatula plants inoculated with the double mutant exhibited reduced shoot dry weight (SDW), although there was no corresponding reduction in nitrogen fixation activity. Whether the phasins are involved in a metabolic regulatory response or whether the reduced SDW is due to a reduction in assimilation of fixed nitrogen rather than a reduction in nitrogen fixation activity remains to be established.


2021 ◽  
Vol 5 ◽  
Author(s):  
Vitaliy V. Volkogon ◽  
Svitlana B. Dimova ◽  
Kateryna I. Volkogon ◽  
Vasyl P. Sidorenko ◽  
Mykola V. Volkogon

The study aim was to evaluate the potential nitrogen fixation and denitrification in the rhizosphere soil of potato plants, crop yield and output quality in response to the different fertilization systems and the inoculation with Azospirillum brasilense 410. Field stationary experiment was conducted between 2016 and 2019 with potato in a crop rotation system on leached chernozem soil. Farmyard manure, 40 t/ha, applied prior to potatoes planting promotes nitrogen fixation (0.8–2.0 times compared to control). However, it has also affected denitrification (in 1.4–2.2 times higher compared to control). The lowest rate of mineral fertilizers used in the experiment, N40P40K40, was shown as most environmentally feasible. Under its use the increase of soil nitrogenase activity and low denitrification levels were observed. Same trends were also noted for the medium fertilizer rate, N80P80K80. The highest doses of mineral fertilizers, N120P120K120, substantially affected the denitrification process and reduced the nitrogen fixation activity (in 1.9–2.2 times). The combination of manure with the medium fertilizers rate has also resulted in high denitrification levels, while the soil nitrogen fixation activity has restored only at flowering stage. Crop inoculation with A. brasilense combined with the manure application, has not affected studied processes. However, crop inoculation after the green manure intercropping has shown the growth of nitrogenase activity. Used on the mineral fertilizers background inoculation has activated nitrogen fixation and has ensured the decrease of denitrification levels, subject to the fertilization background. High fertilizer rates have hampered the inoculation efficiency. Inoculation has promoted crop yields on unfertilized and mineral backgrounds or following green manure. Crop inoculation following organic and the organo-mineral backgrounds had no significant effect, probably due to the competition for A. brasilense from microorganisms that have created a competitive environment for A. brasilense. Despite its environmental expediency, inoculation combined with the low fertilizer doses underperforms the action of inoculation combined with the medium fertilizer rates showing the latter as the compromise between the environmental requirements and crop productivity. The use of inoculation has promoted the accumulation of starch and ascorbic acid and has contributed to the reduction of nitrate contents in the tubers of inoculated plants.


2011 ◽  
Vol 12 ◽  
pp. 181-192
Author(s):  
O.O. Shahovnina

Potential activity of nitrogen fixation on washed roots of investigated varieties of spring triticale determined in field experiments has characterized by considerable fluctuations both during single phenophase in different years of research and throughout the vegetative period, that was caused by the influence of environment factors as well as by the existence of variability within the cultivar. The cultivar Oberig kharkovsky possesses the considerable polymorphism by the nitrogen fixation activity index in root zone of plants. Presowing inoculation of triticale seeds with active strain Azospirillum sp. 10 results in the increase of number of plants with higher nitrogen fixation activity on the washed roots.


Sign in / Sign up

Export Citation Format

Share Document