scholarly journals Prevalence of BRAF V600E Mutation in the Iranian Patients with Hairy Cell Leukemia: A Retrospective Study

2021 ◽  
Vol 6 (2) ◽  
pp. 141-145
Author(s):  
Mojtaba Karimi ◽  
Ahmad Monabbati ◽  
Nasibeh Sargazi Moghadam

Objective: BRAF V600E mutation has several implications in hairy cell leukemia (HCL). The prevalence of This mutation has been investigated in various populations, but not in Iran. In this study, we evaluated the prevalence of BRAF V600E mutation in an Iranian HCL population as well as its association with the patients’ characteristics.Methods: In a retrospective (archival) study, 20 HCL patients with the confirmed immunophenotypic and morphologic diagnosis were included. Paraffin-embedded blocks of bone marrow aspirate were used to investigated BRAF V600E mutation using amplification refractory mutation system (ARMS) PCR. Demographic, clinical, laboratory, and immunophenotypic characteristics of patients were extracted from the patients medical profiles.Result: BRAF V600E mutation was present in 17 (85%) HCL patients and absent in three (15%) patients. The mean age of the patients was 44.76 ± 8.69 years in mutation-positive and 62.33 ± 8.69 in mutation-negative patients. This difference was statistically significant (p=0.013). No significant difference was found between the laboratory indices of the mutation-positive and mutation-negative groups. The clinical, morphologic, and immunophenotypic characteristics of the two groups were also statistically comparable.Conclusion: BRAF V600E mutation is present in the majority of the Iranian HCL patients and is associated with younger age of presentation.

2018 ◽  
Vol 108 (4) ◽  
pp. 416-422
Author(s):  
Hidekazu Itamura ◽  
Masaru Ide ◽  
Akemi Sato ◽  
Naoko Sueoka-Aragane ◽  
Eisaburo Sueoka ◽  
...  

2020 ◽  
Vol 13 ◽  
pp. 100197 ◽  
Author(s):  
Zaid Abdel Rahman ◽  
Firas Muwalla ◽  
Liuyan Jiang ◽  
James Foran

Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3330-3332 ◽  
Author(s):  
Liqiang Xi ◽  
Evgeny Arons ◽  
Winnifred Navarro ◽  
Katherine R. Calvo ◽  
Maryalice Stetler-Stevenson ◽  
...  

Abstract Recently, the BRAF V600E mutation was reported in all cases of hairy cell leukemia (HCL) but not in other peripheral B-cell neoplasms. We wished to confirm these results and assess BRAF status in well-characterized cases of HCL associated with poor prognosis, including the immunophenotypically defined HCL variant (HCLv) and HCL expressing the IGHV4-34 immunoglobulin rearrangement. Fifty-three classic HCL (HCLc) and 16 HCLv cases were analyzed for BRAF, including 5 HCLc and 8 HCLv expressing IGHV4-34. BRAF was mutated in 42 (79%) HCLc, but wild-type in 11 (21%) HCLc and 16 (100%) HCLv. All 13 IGHV4-34+ HCLs were wild-type. IGHV gene usage in the 11 HCLc BRAF wild-type cases included 5 IGHV4-34, 5 other, and 1 unknown. Our results suggest that HCLv and IGHV4-34+ HCLs have a different pathogenesis than HCLc and that a significant minority of other HCLc are also wild-type for BRAF V600.


2017 ◽  
Vol 45 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Davide Vacca ◽  
Valeria Cancila ◽  
Alessandro Gulino ◽  
Giosuè Lo Bosco ◽  
Beatrice Belmonte ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2679-2679
Author(s):  
Susanne Schnittger ◽  
Frank Dicker ◽  
Christiane Eder ◽  
Sabine Jeromin ◽  
Tamara Alpermann ◽  
...  

Abstract Abstract 2679 Background: The BRAF V600E mutation has recently been discovered in nearly all cases of hairy cell leukemia (HCL), but not in cases of HCL-variant (HCL-v). However, this perfect correlation has been challenged by studies reporting HCL cases without BRAF V600E. Interestingly, the immunoglobulin heavy chain variable region gene IGHV4–34, which has been associated with poor prognosis in HCL, appeared exclusively and to a high percentage in these BRAF V600E-negative cases of classic HCL and also in HCL-v (Xi et al., Blood, 2011). Further, splenic marginal zone lymphoma (SMZL) is a disease closely related to HCL and HCL-v and BRAF has been shown to be unmutated in this entity. Aims: 1. To characterize our cohorts of HCL, HCL-v and SMZL for the presence of BRAF V600E and to correlate the results with IGHV gene usage. 2. We hypothesized that other genes of the RAF/RAS pathway might be affected. Thus we analysed NRAS, and KRAS in addition to BRAF for mutations in all three entities. Methods: We analyzed the bone marrow or peripheral blood of 314 cases (182 cases with HCL, 49 cases with HCL-v, and 83 cases with SMZL) at diagnosis as confirmed by multiparameter flow cytometry and cytomorphology. The BRAF V600E mutation was analyzed by an mRNA-based reverse transcription allele-specific real-time quantification (RQ-PCR) assay. The BRAF V600E expression was calculated as %BRAF V600E/BRAF wt. NRAS and KRAS were analyzed by melting curve analysis and subsequent Sanger sequencing. IGHV genes and mutation status were analyzed by the use of Biomed-2 primers. An identity of ≥98% of the analyzed IGHV sequence compared to published germline sequences was considered an unmutated IGHV status. Results: In our cohort the median percent leukemic cells was 16% (range 0.2–74%) for HCL, 33% (range 5–59%) for HCL-v and 29% (range: 1–84%) for SMZL as determined by multiparameter flow cytometry. The BRAF V600E mutation was detected in 178/182 (97.8%) of HCL cases, whereas 0/49 of HCL-v and 0/83 SMZL were positive. Thus, the BRAF V600E mutation is 100% specific for HCL regarding these three entities. The median BRAF V600E expression ratio of positive cases was 14.2 (range 0.22 – 280.3). After normalization to % pathological cells as assessed by multiparameter flow cytometry the median ratio was 173 (range:22–1,788). However, in 4 cases with 4%, 8%, 28% and 66% percent leukemic cells by multiparameter flow cytometry, which is within the clone size that can be clearly detected by the BRAF V600E-specific RQ-PCR assay, no mutation was detected. Thus, BRAF V600E detection used for the identification of HCL has a sensitivity of 97.8%. Further, NRAS and KRAS mutation screening in all cases with HCL, HCL-v, and SMZL did not detect any mutation except for one case with SMZL that harboured an NRAS Gly12Asp mutation. This case was found to have an MDS in parallel and thus the mutation more likely belongs to the MDS clone. Thus, analysis of NRAS and KRAS mutations does not further improve diagnostics in these diseases. Further, we analyzed the IGHV usage in all 4 BRAF unmutated HCL and in additional 60 cases (total n=64) with HCL and 41 cases with HCL-v. IGHV4–34 usage was very frequent in HCL-v with 14/41 (34.1%). In contrast, it was never detected in HCL including the BRAF wildtype cases. Thus, we were not able to confirm the usage of the IGHV4–34 gene, which was previously suggested for BRAF V600E negative HCL. On the other hand IGHV5–51 was most frequently found in HCL (9/64, 14.1%) but never detected in HCL-v. We detected an unmutated IGHV status in 12/62 (19.4%) of HCL, which was less frequent compared to 14/40 (35.0%) in HCL-v (p = 0.095). The IGHV mutation status was unmutated in 9/11 (81.8%) IGHV4–34 cases (100% identity to germline each). The four cases of HCL, which lacked BRAF V600E mutation, expressed the IGHV genes IGHV1–3*01 (96.5% identity), IGHV1–69*02 (94.0% identity), IGHV3–9*01 (96.9% identity) and IGHV6-1*01 (99.0% identity), which were also expressed by various BRAF V600E positive HCL cases in our cohort. Conclusions: 1) In our cohort of 314 cases with HCL, HCL-v, and SMZL we confirm a high specificity (100%) and sensitivity (97.8%) for BRAF V600E mutations to detect HCL. 2) Other RAS pathway mutations (NRAS, KRAS) were not detected in any of the three analysed entities. 3) In the 4 rare cases of HCL with BRAF wt we were not able to confirm the previously postulated IGHV4–34 usage. 4) IGHV4–34 further delineates classic HCL from HCL-v. Disclosures: Schnittger: MLL Munich Leukemia Laboratory: Equity Ownership. Dicker:MLL Munich Leukemia Laboratory: Employment. Eder:MLL Munich Leukemia Laboratory: Employment. Jeromin:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2896-2896 ◽  
Author(s):  
Robert J. Kreitman ◽  
Evgeny Arons ◽  
Sapolsky Jeffrey ◽  
Laura Roth ◽  
Hong Zhou ◽  
...  

Abstract Abstract 2896 Background: Moxetumomab pasudotox is an anti-CD22 recombinant immunotoxin containing truncated Pseudomonas exotoxin which was recently reported to achieve a complete remission rate of 46% in 28 patients with relapsed/refractory hairy cell leukemia (HCL). An additional 20 patients were treated at the highest dose level and are now fully evaluable for response and minimal residual disease (MRD) determinations. RQ-PCR using clone-specific primers and a clone-specific TaqMan probe is capable of detecting one HCL cell in 106normal cells. Recently reported methods to detect the HCL-associated BRAF V600E mutation include pyrosequencing (5–10% sensitivity) and PCR (0.1–0.23% sensitivity). Methods: Moxetumomab pasudotox was administered to 16 patients at 5–40 ug/Kg every other day for 3 doses (QODx3) and to 32 patients at 50 ug/Kg QODx3, via 1–16 (median 4) cycles per patient at 4-week intervals. Complete remission (CR) required resolution of cytopenias and elimination of HCL in the blood and marrow by standard microscopy, but MRD could be present by flow cytometry of blood or bone marrow aspirate (BMA) or immunohistochemistry (IHC) of the bone marrow biopsy (BMBx). Blood and marrow from patients were also tested by PCR using consensus primers. When immunoglobulin (Ig) rearrangements could be cloned, RQ-PCR using clone-specific primer and probe was performed. To detect MRD by the BRAF V600E mutation, BRAF quantitative PCR (BRAF-qPCR) was performed on cDNA samples, using mutant-specific primer, and SYBR-Green detection followed by melting point analysis. MRD testing for BRAF-qPCR, unlike clone-specific RQ-PCR, did not require prior cloning of the Ig rearrangement. Results: All 198 cycles of moxetumomab administered to 48 patients were evaluable for toxicity and response. No dose limiting toxicity was observed, although 2 patients as previously reported had a grade 2 hemolytic uremic syndrome with transient grade 1 platelet and creatinine abnormalities. Of the 48 HCL patients at all dose levels, there were 26 (54%) CRs, with an overall response rate (ORR) of 88%. Of 32 at 50 ug/Kg QODx3, there were 19 (59%) CRs with an ORR of 91%. Of these 19 CRs, 11 (58%) achieved MRD negativity by repeated flow cytometry of both BMA and blood and IHC of BMBx. Flow cytometry of the BMA was the most sensitive conventional test of MRD. Of the 9 CRs at 50 ug/Kg QODx3 evaluable by clone-specific RQ-PCR of blood, 5 negative were also flow-negative, and 4 positive were also flow-positive (p=0.008). BRAF-qPCR on cDNA from limiting dilutions of BRAF V600E+ Colo-205 cells into BRAF wild-type cells achieved consistent detection at 1:105dilution (0.001%). Of 10 flow-negative CRs at 50 ug/Kg QODx3 evaluated by BRAF-qPCR, all 10 (100%) were BRAF-qPCR negative, including 4 which were nonevaluable by RQ-PCR due to inability to clone the Ig rearrangements prior to treatment. Currently 12 (63%) of the 19 CRs at 50 ug/Kg QODx3 are ongoing at 6–47 (median 21) months, including 10 (91%) of 11 MRD-negative vs 2 (25%) of 8 MRD+ CRs (p=0.006). Conclusions: Moxetumomab pasudotox is active in relapsed and refractory HCL and has a safety profile supporting further development for this disease. Retreatment on this trial could not necessarily be extended to achieve MRD-negative BMAs or molecular remission by RQ-PCR using sequence-specific or BRAF primers. However, these tests might be useful in the future to guide retreatment, optimize CR durability and possibly eradicate the HCL clone in selected patients. This summary contains investigator reported data. This study was sponsored by MedImmune, LLC, and supported by NCI's Intramural Research Program and the Hairy Cell Leukemia Research Foundation. Disclosures: Kreitman: NIH: Co-inventor on the NIH patent for Moxetumomab Pasudotox, Co-inventor on the NIH patent for Moxetumomab Pasudotox Patents & Royalties. Off Label Use: Moxetumomab Pasudotox is an experimental agent for CD22+ hematologic malignancies. FitzGerald:NIH: Coinventor on the NIH patent for Moxetumomab Pasudotox, Coinventor on the NIH patent for Moxetumomab Pasudotox Patents & Royalties. Fei:AstraZeneca: Stock, Stock Other; MedImmune, LLC: Employment. Ibrahim:AstraZeneca: Stocks, Stocks Other; MedImmune: Employment. Pastan:NIH: Coinventor on NIH patent for moxetumomab pasudotox, Coinventor on NIH patent for moxetumomab pasudotox Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document