archival dna
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 8 (9) ◽  
pp. 210474
Author(s):  
Nicolas Straube ◽  
Michaela Preick ◽  
Gavin J. P. Naylor ◽  
Michael Hofreiter

After initial detection of target archival DNA of a 116-year-old syntype specimen of the smooth lantern shark, Etmopterus pusillus , in a single-stranded DNA library, we shotgun-sequenced additional 9 million reads from this same DNA library. Sequencing reads were used for extracting mitochondrial sequence information for analyses of mitochondrial DNA characteristics and reconstruction of the mitochondrial genome. The archival DNA is highly fragmented. A total of 4599 mitochondrial reads were available for the genome reconstruction using an iterative mapping approach. The resulting genome sequence has 12 times coverage and a length of 16 741 bp. All 37 vertebrate mitochondrial loci plus the control region were identified and annotated. The mitochondrial NADH2 gene was subsequently used to place the syntype haplotype in a network comprising multiple E. pusillus samples from various distant localities as well as sequences from a morphological similar species, the shortfin smooth lantern shark Etmopterus joungi . Results confirm the almost global distribution of E. pusillus and suggest E. joungi to be a junior synonym of E. pusillus . As mitochondrial DNA often represents the only available reference information in non-model organisms, this study illustrates the importance of mitochondrial DNA from an aged, wet collection type specimen for taxonomy.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Johan Östergren ◽  
Stefan Palm ◽  
John Gilbey ◽  
Göran Spong ◽  
Johan Dannewitz ◽  
...  

Intra-species genetic homogenization arising from anthropogenic impacts is a major threat to biodiversity. However, few taxa have sufficient historical material to systematically quantify long-term genetic changes. Using archival DNA collected over approximately 100 years, we assessed spatio-temporal genetic change in Atlantic salmon populations across the Baltic Sea, an area heavily impacted by hydropower exploitation and associated with large-scale mitigation stocking. Analysis was carried out by screening 82 SNPs in 1680 individuals from 13 Swedish rivers. We found an overall decrease in genetic divergence and diminished isolation by distance among populations, strongly indicating genetic homogenization over the past century. We further observed an increase in genetic diversity within populations consistent with increased gene flow. The temporal genetic change was lower in larger wild populations than in smaller wild and hatchery-reared ones, indicating that larger populations have been able to support a high number of native spawners in relation to immigrants. Our results demonstrate that stocking practices of salmon in the Baltic Sea have led to the homogenization of populations over the last century, potentially compromising their ability to adapt to environmental change. Stocking of reared fish is common worldwide, and our study is a cautionary example of the potentially long-term negative effects of such activities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastian Kirchhof ◽  
Mariana L. Lyra ◽  
Ariel Rodríguez ◽  
Ivan Ineich ◽  
Johannes Müller ◽  
...  

AbstractClimate has a large impact on diversity and evolution of the world’s biota. The Eocene–Oligocene transition from tropical climate to cooler, drier environments was accompanied by global species turnover. A large number of Old World lacertid lizard lineages have diversified after the Eocene–Oligocene boundary. One of the most speciose reptile genera in the arid Palearctic, Acanthodactylus, contains two sub-Saharan species with unresolved phylogenetic relationship and unknown climatic preferences. We here aim to understand how and when adaptation to arid conditions occurred in Acanthodactylus and when tropical habitats where entered. Using whole mitogenomes from fresh and archival DNA and published sequences we recovered a well-supported Acanthodactylus phylogeny and underpinned the timing of diversification with environmental niche analyses of the sub-Saharan species A. guineensis and A. boueti in comparison to all arid Acanthodactylus. We found that A. guineensis represents an old lineage that splits from a basal node in the Western clade, and A. boueti is a derived lineage and probably not its sister. Their long branches characterize them—and especially A. guineensis—as lineages that may have persisted for a long time without further diversification or have undergone multiple extinctions. Environmental niche models verified the occurrence of A. guineensis and A. boueti in hot humid environments different from the other 42 arid Acanthodactylus species. While A. guineensis probably remained in tropical habitat from periods prior to the Eocene–Oligocene boundary, A. boueti entered tropical environments independently at a later period. Our results provide an important baseline for studying adaptation and the transition from humid to arid environments in Lacertidae.


The Condor ◽  
2019 ◽  
Vol 121 (3) ◽  
Author(s):  
Nicolas J Rawlence ◽  
Matt J Rayner ◽  
Tim G Lovegrove ◽  
Debbie Stoddart ◽  
Melanie Vermeulen ◽  
...  

Abstract Genetic data are increasingly being used to prioritize species conservation in a fiscally constrained age of seemingly boundless conservation crises. Such data can also reveal previously cryptic biodiversity requiring further revision of conservation management guidelines. Using a combination of mitochondrial (control region) and nuclear (beta fibrinogen intron 7) DNA, and morphology, we reveal that the endemic New Zealand Spotted Shag (Phalacrocorax punctatus) complex exhibits phylogenetic structure that is decoupled from previously recorded qualitative morphological variation. Crucially, the most genetically distinct populations within P. punctatus are from northern New Zealand; recent surveys show that these populations, which house important genetic diversity within Spotted Shags, are in danger of being extirpated. In contrast, we find the previously phenotypically differentiated nominate (P. punctatus punctatus) and Blue (P. punctatus oliveri) Shag subspecies show no genetic and morphological separation, and are of least conservation concern.


2018 ◽  
Vol 22 (10) ◽  
pp. 1972-1975 ◽  
Author(s):  
Dixita Limbachiya ◽  
Manish K. Gupta ◽  
Vaneet Aggarwal

2012 ◽  
Vol 18 (22) ◽  
pp. 6147-6154 ◽  
Author(s):  
William P. Accomando ◽  
John K. Wiencke ◽  
E. Andres Houseman ◽  
Rondi A. Butler ◽  
Shichun Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document