scholarly journals Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM)

2019 ◽  
Vol 20 (5) ◽  
pp. 1555-1561 ◽  
Author(s):  
Seeja R D ◽  
Suresh A
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lokesh Singh ◽  
Rekh Ram Janghel ◽  
Satya Prakash Sahu

PurposeThe study aims to cope with the problems confronted in the skin lesion datasets with less training data toward the classification of melanoma. The vital, challenging issue is the insufficiency of training data that occurred while classifying the lesions as melanoma and non-melanoma.Design/methodology/approachIn this work, a transfer learning (TL) framework Transfer Constituent Support Vector Machine (TrCSVM) is designed for melanoma classification based on feature-based domain adaptation (FBDA) leveraging the support vector machine (SVM) and Transfer AdaBoost (TrAdaBoost). The working of the framework is twofold: at first, SVM is utilized for domain adaptation for learning much transferrable representation between source and target domain. In the first phase, for homogeneous domain adaptation, it augments features by transforming the data from source and target (different but related) domains in a shared-subspace. In the second phase, for heterogeneous domain adaptation, it leverages knowledge by augmenting features from source to target (different and not related) domains to a shared-subspace. Second, TrAdaBoost is utilized to adjust the weights of wrongly classified data in the newly generated source and target datasets.FindingsThe experimental results empirically prove the superiority of TrCSVM than the state-of-the-art TL methods on less-sized datasets with an accuracy of 98.82%.Originality/valueExperiments are conducted on six skin lesion datasets and performance is compared based on accuracy, precision, sensitivity, and specificity. The effectiveness of TrCSVM is evaluated on ten other datasets towards testing its generalizing behavior. Its performance is also compared with two existing TL frameworks (TrResampling, TrAdaBoost) for the classification of melanoma.


2021 ◽  
Author(s):  
Lekshmi Kalinathan ◽  
Deepika Sivasankaran ◽  
Janet Reshma Jeyasingh ◽  
Amritha Sennappa Sudharsan ◽  
Hareni Marimuthu

Hepatocellular Carcinoma (HCC) proves to be challenging for detection and classification of its stages mainly due to the lack of disparity between cancerous and non cancerous cells. This work focuses on detecting hepatic cancer stages from histopathology data using machine learning techniques. It aims to develop a prototype which helps the pathologists to deliver a report in a quick manner and detect the stage of the cancer cell. Hence we propose a system to identify and classify HCC based on the features obtained by deep learning using pre-trained models such as VGG-16, ResNet-50, DenseNet-121, InceptionV3, InceptionResNet50 and Xception followed by machine learning using support vector machine (SVM) to learn from these features. The accuracy obtained using the system comprised of DenseNet-121 for feature extraction and SVM for classification gives 82% accuracy.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

2018 ◽  
Vol 62 (5) ◽  
pp. 558-562
Author(s):  
Uchaev D.V. ◽  
◽  
Uchaev Dm.V. ◽  
Malinnikov V.A. ◽  
◽  
...  

2013 ◽  
Vol 38 (2) ◽  
pp. 374-379 ◽  
Author(s):  
Zhi-Li PAN ◽  
Meng QI ◽  
Chun-Yang WEI ◽  
Feng LI ◽  
Shi-Xiang ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document