Biodiversity and distribution of brittle stars (Echinodermata, Ophiuroidea) in the Kara Sea

2021 ◽  
Vol 325 (2) ◽  
pp. 235-247
Author(s):  
E.A. Stratanenko ◽  
N.A. Strelkova ◽  
I.S. Smirnov

Brittle stars are one of the leading components of the benthic communities in the Kara Sea. The fauna of the Kara Sea brittle stars is represented by 12 species. Ophiocten sericeum (Forbes, 1852), Ophiopleura borealis Danielssen et Koren, 1877, Ophiacantha bidentata (Bruzelius, 1805), and Ophioscolex glacialis Müller et Troschel, 1842 are most widespread within the sea. Based on the available data, distribution maps for each species were constructed. A comparative analysis of the Barents Sea, the Kara Sea and the Laptev Sea fauna was carried out. It was found that during evolution the fauna of Kara Sea brittle stars at the genus level was under balanced influence of autochthonous and allochthons processes; at the species level the autochthonous processes were predominant. The obtained value of the taxonomic uniqueness index characterizes the fauna of the Kara Sea brittle stars as quite isolated at all taxonomic levels. Six biogeographic groups were distinguished in the biogeographic structure of the fauna of the sea, of which the boreal-Arctic and high-boreal-Arctic forms are the most represented. The use of the Jaccard species similarity coefficients and Pearson correlation showed that the greatest similarity at the species level is observed between the Kara and the Laptev seas.

2021 ◽  
Vol 12 (3-2021) ◽  
pp. 150-157
Author(s):  
S.A. Chaus ◽  

This article provides data on distribution of two circumpolar species – twohorn sculpin Icelus bicornis and spatulate sculpin Icelus spatula in the Russian Arctic seas (Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea) in the period from 2014 to 2019. The abundance of the twohorn sculpin varied from 2 to 18 ind/km2, and the biomass varied within 0.002–0.089 kg/km2. For the spatulate sculpin, these parameters were 2–21 ind/km2 and 0.002–0.699 kg/km2. The maximum and minimum values of these parameters for Icelus bicornis were recorded in the Laptev Sea, and for Icelus spatula in the East Siberian Sea. Information on the vertical spatial distribution of these species is also given, confirming the information given earlier that the spatulate sculpin occurs at shallower depths in contrast to the twohorn sculpin.


2013 ◽  
Vol 10 (12) ◽  
pp. 8109-8128 ◽  
Author(s):  
P. E. Land ◽  
J. D. Shutler ◽  
R. D. Cowling ◽  
D. K. Woolf ◽  
P. Walker ◽  
...  

Abstract. We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea–air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea–air fluxes of −36 ± 14 and −11 ± 5 Tg C yr−1, respectively, and the Kara Sea was a weak net CO2 source with an integrated sea–air flux of +2.2 ± 1.4 Tg C yr−1. The combined integrated CO2 sea–air flux from all three was −45 ± 18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea–air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea–air flux change of +4.0 Tg C in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara Sea source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink in the 2050s.


2017 ◽  
Vol 30 (22) ◽  
pp. 8913-8927 ◽  
Author(s):  
Svenja H. E. Kohnemann ◽  
Günther Heinemann ◽  
David H. Bromwich ◽  
Oliver Gutjahr

The regional climate model COSMO in Climate Limited-Area Mode (COSMO-CLM or CCLM) is used with a high resolution of 15 km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 20°C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice. Also, the 30-km version of the Arctic System Reanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 1°C for the ocean and sea ice area. Thus, ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.5°C yr−1 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 70°N; for CCLM the warming amounts to an average of almost 5°C for 2002/03–2011/12.


2020 ◽  
Vol 11 (4) ◽  
pp. 134-150
Author(s):  
A.G. Dvoretsky ◽  

In 1960th, red king crab was intentionally introduced into the Barents Sea. This species has formed a new self-sustaining population. In Russian waters, the commercial fishery of red king crab was started in 2004. Non-indigenous status and high commercial value of the crab have led to growing interest in the study of its biology and ecology. Red king crab has been intensively studied by specialists of Murmansk Marine Biological Institute to evaluate the role of this crab in local benthic communities and provide a theoretic basis and important applications for fishery science. New data on the population dynamics, symbiotic relationships, feeding and reproduction of red king crab have been obtained from long-term studies in coastal waters of the Barents Sea. Significant results of these studies are presented in this review.


2012 ◽  
Vol 9 (9) ◽  
pp. 12377-12432 ◽  
Author(s):  
P. E. Land ◽  
J. D. Shutler ◽  
R. D. Cowling ◽  
D. K. Woolf ◽  
P. Walker ◽  
...  

Abstract. During 2008 and 2009 we applied coincident Earth observation data collected from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and net sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara) to assess net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents Seas were net sinks for atmospheric CO2, with sea-air fluxes of −34±13 and −13±6 Tg C yr−1, respectively and the Kara Sea was a weak net CO2 source with a sea-air flux of +1.5±1.1 Tg C yr−1. The combined net CO2 sea-air flux from all three was −45±18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual net sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave a net sea-air flux change of +3.5 Tg C in the Greenland Sea, +5.5 Tg C in the Barents Sea and +1.4 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 10% and 50% respectively, and increasing the weak Kara Sea source by 64%. Overall, the regional flux changed by +10.4 Tg C, reducing the regional sink by 23%. In terms of CO2 sink strength we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink by 2060.


Zootaxa ◽  
2008 ◽  
Vol 1737 (1) ◽  
pp. 1 ◽  
Author(s):  
S. BLAIR HEDGES ◽  
WILLIAM E. DUELLMAN ◽  
MATTHEW P. HEINICKE

New World frogs recently placed in a single, enormous family (Brachycephalidae) have direct development and reproduce on land, often far away from water. DNA sequences from mitochondrial and nuclear genes of 344 species were analyzed to estimate their relationships. The molecular phylogeny in turn was used as the basis for a revised classification of the group. The 882 described species are placed in a new taxon, Terrarana, and allocated to four families, four subfamilies, 24 genera, 11 subgenera, 33 species series, 56 species groups, and 11 species subgroups. Systematic accounts are provided for all taxa above the species level. Two families (Craugastoridae and Strabomantidae), three subfamilies (Holoadeninae, Phyzelaphryninae, and Strabomantinae), six genera (Bryophryne, Diasporus, Haddadus, Isodactylus, Lynchius, and Psychrophrynella), and two subgenera (Campbellius and Schwartzius) are proposed and named as new taxa, 13 subspecies are considered to be distinct species, and 613 new combinations are formed. Most of the 100 informal groups (species series, species groups, and species subgroups) are new or newly defined. Brachycephalus and Ischnocnema are placed in Brachycephalidae, a relatively small clade restricted primarily to southeastern Brazil. Eleutherodactylidae includes two subfamilies, four genera, and five subgenera and is centered in the Caribbean region. Craugastoridae contains two genera and three subgenera and is distributed mainly in Middle America. Strabomantidae is distributed primarily in the Andes of northwestern South America and includes two subfamilies, 16 genera, and three subgenera. Images and distribution maps are presented for taxa above the species level and a complete list of species is provided. Aspects of the evolution, biogeography, and conservation of Terrarana are discussed.


2016 ◽  
Vol 684 ◽  
pp. 131-147 ◽  
Author(s):  
Peter Klitzke ◽  
Judith Sippel ◽  
Jan Inge Faleide ◽  
Magdalena Scheck-Wenderoth

Polar Record ◽  
1985 ◽  
Vol 22 (139) ◽  
pp. 401-412 ◽  
Author(s):  
William Barr

AbstractAleksandr Stepanovich Kuchin (1888–1912) was already an experienced mariner and oceanographer when Amundsen invited him to join the Fram expedition of 1910–12. Expecting a voyage through the Barents Sea, Kuchin found himself on an expedition to the Antarctic. While Amundsen's sledging parties sought the South Pole, Kuchin remained with the ship, completing an excellent oceanographic survey of the southern Atlantic Ocean. Returning to Russia in 1912 he was recruited, by the geologist and explorer V. A. Rusinov to join a scientific expedition to Svalbard. As deputy leader of the party and captain of Gerkules, the expedition ship, Kuchin played an important role in the Svalbard survey. Then once again found himself heading in an unexpected direction: on completing the Svalbard work, Rusanov decided to attempt the Northern Sea Route to the Bering Strait. Gerkules disappeared and was never seen again; her loss, presumably in the Kara Sea, brought to an untimely end the career of a promising young polar explorer.


Sign in / Sign up

Export Citation Format

Share Document