scholarly journals Selection of tropical lactic acid bacteria for enhancing the quality of maize silage

2013 ◽  
Vol 96 (12) ◽  
pp. 7777-7789 ◽  
Author(s):  
A.O. Santos ◽  
C.L.S. Ávila ◽  
R.F. Schwan
Author(s):  
Hanum Mukti Rahayu ◽  
Mahwar Qurbaniah

Selection of bacteria in yoghurt fermentation is important to produce yoghurt with good quality. Tempoyak lactic acid bacteria is potential to be yoghurt starter culture becouse tempoyak fermentation has similarities in producing lactic acid such as yoghurt. This study aimed to isolate and identify the lactic acid bacteria (LAB) from tempoyak which will be used as a yoghurt starter culture. The methods used in this study included isolation and selection of acid-producing bacteria, lactase and protease activity test, identification of morphology and biochemistry as well as testing the quality of the yoghurt. The results of the study obtained 32 isolates of the LAB with the same characteristic colony, include the round shape, cream-coloured with convex elevation and, smooth surface and entire edge. Selection of acid-producing bacteria obtained 12 isolates with the ability to produce clear zones on MRSA + CaCO3 media ≥ 0.7 cm. Selection of lactase-producing LAB obtained six strains and the protease test obtained two superior strains. Two superior strains namely Tp 12 and Tp 28 have characteristics of coccus, gram-positive, negative catalase, non-endospore and non-motile forms. The organoleptic and several quality tests showed yoghurt using Tp 12 as starter has higher acceptability, the highest levels of lactic acid and lactose levels with values respectively 4.25, 0.84% and 24.53%. This study obtained the LAB strain which can be used as yoghurt starter culture. Tp 12 strain can be used to improve the quality of yoghurt and become a commercial starter that can be applied to various fermented products.


2021 ◽  
Vol 9 (5) ◽  
pp. 1044
Author(s):  
Jeong A Kim ◽  
Geun Su Kim ◽  
Se Mi Choi ◽  
Myeong Seon Kim ◽  
Do Young Kwon ◽  
...  

Hardening of cheese is one of major issues that degrade the quality of Home Meal Replacement (HMR) foods containing cheese such as Cheese-ddukbokki rice cake (CD, stir-fried rice cakes with shredded cheese). The quality of cheese, such as pH, proteolytic, and flavor properties, depends on various lactic acid bacteria (LAB) used in cheese fermentation. The hardening of cheese is also caused by LAB. In this study, various LAB strains were isolated from CD samples that showed rapid hardening. The correlation of LAB with the hardening of cheese was investigated. Seven of the CD samples with different manufacturing dates were collected and tested for hardening properties of cheese. Among them, strong-hardening of cheese was confirmed for two samples and weak-hardening was confirmed for one sample. All LAB in two strong-hardening samples and 40% of LAB in one weak-hardening sample were identified as Latilactobacillus curvatus. On the other hand, most LAB in normal cheese samples were identified as Leuconostoc mesenteroides and Lactobacillus casei. We prepared cheese samples in which L. curvatus (LC-CD) and L. mesenteroides (LM-CD) were most dominant, respectively. Each CD made of the prepared cheese was subjected to quality test for 50 days at 10 °C. Hardening of cheese with LC-CD dominant appeared at 30 days. However, hardening of cheese with LM-CD dominant did not appear until 50 days. The pH of the LC-CD was 5.18 ± 0.04 at 30 days, lower than that of LM-CD. The proteolytic activity of LC-CD sample was 2993.67 ± 246.17 units/g, higher than that of LM-CD sample (1421.67 ± 174.5 units/g). These results indicate that high acid production and high protease activity of L. curvatus might have caused hardening of cheese.


2021 ◽  
Vol 9 (7) ◽  
pp. 1346
Author(s):  
Mariana Petkova ◽  
Petya Stefanova ◽  
Velitchka Gotcheva ◽  
Angel Angelov

Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.


2014 ◽  
Vol 52 (7) ◽  
pp. 4124-4134 ◽  
Author(s):  
Joana Šalomskienė ◽  
Asta Abraitienė ◽  
Dovilė Jonkuvienė ◽  
Irena Mačionienė ◽  
Jūratė Repečkienė

2008 ◽  
Vol 71 (8) ◽  
pp. 1724-1733 ◽  
Author(s):  
SUSAN ROUSE ◽  
DOUWE VAN SINDEREN

Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.


Sign in / Sign up

Export Citation Format

Share Document