The effects of rumen nitrogen balance on nutrient intake, nitrogen partitioning, and microbial protein synthesis in lactating dairy cows offered different dietary protein sources

Author(s):  
D. Kand ◽  
U. Dickhoefer
Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1774
Author(s):  
Rubem R. Rocha Filho ◽  
Djalma C. Santos ◽  
Antonia S. C. Véras ◽  
Michelle C. B. Siqueira ◽  
Carolina C. F. Monteiro ◽  
...  

This study aimed to investigate the effects on nutrient intake and digestibility, milk yield (MY) and composition, milk fatty acids profile, and microbial protein synthesis caused by feeding lactating dairy cows four different forage cactus genotypes. Eight Girolando cows (5/8 Holstein × 3/8 Gyr), weighing 490 ± 69.0 kg (means ± standard deviation), and producing 15.5 ± 1.0 kg/d of milk during pretrial were distributed to two contemporaneous 4 × 4 Latin squares. The cows were fed a total mixed ration composed of sorghum silage (385 g/kg of dry matter (DM)), concentrated mix (175 g/kg DM), and forage cactus (440 g/kg DM). The experimental treatments consisted of different cactus genotypes, such as Gigante cactus (GC), Miúda cactus (MC), IPA Sertânia cactus (SC), and Orelha de Elefante Mexicana cactus (OEMC). The feeding of MC provided a higher intake of DM, organic matter (OM), and total digestible nutrients, as well as higher MY, energy-corrected milk, and microbial protein synthesis in comparison with those resulting from the other genotypes tested. The GC promoted lower DM and OM, and the apparent digestibility of neutral detergent fiber. The cows fed with OEMC showed lower MY and milk protein yield and content, and higher unsaturated over saturated fatty acid ratio in milk. Miúda forage cactus increased nutrient intake, digestibility of DM and OM, and microbial synthesis without impairing the milk fatty acid profile.


1998 ◽  
Vol 1998 ◽  
pp. 19-19
Author(s):  
A.R. Henderson ◽  
P.C. Garnsworthy ◽  
J.R. Newbold ◽  
P.J. Buttery

Sinclair et al. (1993) found that a diet formulated to be synchronous with regard to hourly release of nitrogen and energy increased microbial protein synthesis by 14% in sheep. Dairy cows in early lactation experience a shortfall of energy and protein, with available protein determining the overall efficiency of metabolism (MacRae and Lobley, 1986) and subsequent milk production. It is therefore necessary to maximise microbial protein yield during this period. In this study diets were designed for lactating dairy cows to contain the same feed ingredients, but to release nitrogen and energy in the rumen at different times. Rumen fermentation parameters, nutrient flows to the small intestine and production performance were investigated.


Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

The study compared the influence of chitosan sources on rumen fermentation, methane emission and milk production in lactating dairy cows fed a glycerin-based diet. Six, lactating Holstein-Frisian crossbreeds (410 ± 5.0 kg BW, 120 ± 21 day-in-milk), were arranged in a 3 x 3 replicated Latin square design. In addition to control, a 2% chitosan extract supplement and a 2% commercial chitosan supplement of dry matter intake were the treatments. The results denoted that no significant differences on daily dry matter, nutrients or estimated energy intake were noted when cows received different sources of chitosan. Nutrient digestibility was not influenced differently by extraction based or commercial chitosan supplements. The pH, temperature, ammonia nitrogen, blood urea and microbial count were similar among treatments. The different sources of chitosan supplements did not change the totals of volatile fatty acids, acetate and butyrate; in contrast, different chitosan sources influenced (P<0.05) propionate content. The ruminal acetate to propionate ratio was markedly (P<0.05) reduced with chitosan supplement, but no change appeared between sources of chitosan. At 4 hours after feeding, the methane estimation significantly decreased with the addition of chitosan supplementation (P<0.05) compared to the control group. The purine derivatives and microbial protein synthesis were not altered by the treatments. No significant differences existed on milk yield, milk composition or milk urea nitrogen when cows received different sources of chitosan (P>0.05). In sum, supplementing extracted chitosan showed more potential than did commercial chitosan for enhancing economic efficiency and recycling shrimp residues, therefore, reducing environmental waste.


2001 ◽  
Vol 2001 ◽  
pp. 184-184
Author(s):  
A.R.J. Cabrita ◽  
A.J.M. Fonseca ◽  
C. Sampaio ◽  
E. Gomes ◽  
R.J. Dewhurst

Diets with low ratios of effective rumen degradable protein (ERDP) to fermentable metabolizable energy (FME) are often offered to dairy cows in Portugal, because they are based on maize silage and protein sources are very expensive. It seems likely that this will restrict microbial protein synthesis and voluntary intake and, consequently, lead to reduced milk yields. The objective of this study was to examine the production response of dairy cows offered diets differing in ERDP/FME ratio.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 662
Author(s):  
Andre S. Avila ◽  
Maximiliane A. Zambom ◽  
Andressa Faccenda ◽  
Caroline H. Werle ◽  
Ana R. E. Almeida ◽  
...  

The objective of this study was to evaluate the effects of five levels of condensed tannins (CT) from black wattle (Acacia mearnsii) in the diets of lactating dairy cows on intake, nutrient digestibility, ruminal microbial protein synthesis, milk production, composition, oxidative profile, and blood metabolites. Five Holstein cows (88 ± 26.8 days in milk) were allocated in a 5 x 5 Latin square design for a period of 20 days (14 days of diet adaptation and six for sampling). Treatments were the inclusion levels of CT at 0, 5, 10, 15 and 20 g/kg of dry matter (DM) in the diet. There was no effect of CT on DM intake. The digestibility of DM and neutral detergent fiber changed quadratically, with the maximum values at 12.2 and 11.4 g/kg of DM, respectively. There was no effect on ruminal microbial protein synthesis and milk production; however, milk casein concentration was reduced linearly. There was no effect on the milk oxidative profile. Inclusion of CT at levels up to 20 g/kg of DM did not affect intake or microbial protein synthesis; however, added CT depressed the production of energy corrected milk and milk casein concentration.


Sign in / Sign up

Export Citation Format

Share Document