scholarly journals Ruminal Ecology, Microbial Protein Synthesis and Milk Production in Lactating Dairy Cows Fed Glycerin-Based Diet: A Comparison Study on Chitosan Sources Supplementation

Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

The study compared the influence of chitosan sources on rumen fermentation, methane emission and milk production in lactating dairy cows fed a glycerin-based diet. Six, lactating Holstein-Frisian crossbreeds (410 ± 5.0 kg BW, 120 ± 21 day-in-milk), were arranged in a 3 x 3 replicated Latin square design. In addition to control, a 2% chitosan extract supplement and a 2% commercial chitosan supplement of dry matter intake were the treatments. The results denoted that no significant differences on daily dry matter, nutrients or estimated energy intake were noted when cows received different sources of chitosan. Nutrient digestibility was not influenced differently by extraction based or commercial chitosan supplements. The pH, temperature, ammonia nitrogen, blood urea and microbial count were similar among treatments. The different sources of chitosan supplements did not change the totals of volatile fatty acids, acetate and butyrate; in contrast, different chitosan sources influenced (P<0.05) propionate content. The ruminal acetate to propionate ratio was markedly (P<0.05) reduced with chitosan supplement, but no change appeared between sources of chitosan. At 4 hours after feeding, the methane estimation significantly decreased with the addition of chitosan supplementation (P<0.05) compared to the control group. The purine derivatives and microbial protein synthesis were not altered by the treatments. No significant differences existed on milk yield, milk composition or milk urea nitrogen when cows received different sources of chitosan (P>0.05). In sum, supplementing extracted chitosan showed more potential than did commercial chitosan for enhancing economic efficiency and recycling shrimp residues, therefore, reducing environmental waste.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 662
Author(s):  
Andre S. Avila ◽  
Maximiliane A. Zambom ◽  
Andressa Faccenda ◽  
Caroline H. Werle ◽  
Ana R. E. Almeida ◽  
...  

The objective of this study was to evaluate the effects of five levels of condensed tannins (CT) from black wattle (Acacia mearnsii) in the diets of lactating dairy cows on intake, nutrient digestibility, ruminal microbial protein synthesis, milk production, composition, oxidative profile, and blood metabolites. Five Holstein cows (88 ± 26.8 days in milk) were allocated in a 5 x 5 Latin square design for a period of 20 days (14 days of diet adaptation and six for sampling). Treatments were the inclusion levels of CT at 0, 5, 10, 15 and 20 g/kg of dry matter (DM) in the diet. There was no effect of CT on DM intake. The digestibility of DM and neutral detergent fiber changed quadratically, with the maximum values at 12.2 and 11.4 g/kg of DM, respectively. There was no effect on ruminal microbial protein synthesis and milk production; however, milk casein concentration was reduced linearly. There was no effect on the milk oxidative profile. Inclusion of CT at levels up to 20 g/kg of DM did not affect intake or microbial protein synthesis; however, added CT depressed the production of energy corrected milk and milk casein concentration.



2017 ◽  
Vol 57 (2) ◽  
pp. 301 ◽  
Author(s):  
Pablo Gomes de Paiva ◽  
Elmeson Ferreira de Jesus ◽  
Tiago Antonio Del Valle ◽  
Gustavo Ferreira de Almeida ◽  
Artur Gabriel Brao Vilas Boas Costa ◽  
...  

Our objective was to evaluate the effects of providing increasing levels of chitosan on nutrient digestibility, ruminal fermentation, blood parameters, nitrogen utilisation, microbial protein synthesis, and milk yield and composition of lactating dairy cows. Eight rumen-fistulated Holstein cows [average days in lactation = 215 ± 60.9; and average bodyweight (BW) = 641 ± 41.1 kg] were assigned into a replicated 4 × 4 Latin square design, with 21-day evaluation periods. Cows were assigned to be provided with four levels of chitosan, placed into the rumen through the fistula, as follows: (1) Control: with no provision of chitosan; (2) 75 mg/kg BW; (3) 150 mg/kg BW; and (4) 225 mg/kg BW. Chitosan had no effect on dry matter intake (P > 0.73); however, chitosan increased (P = 0.05) crude protein digestibility. Propionate concentration was increased (P = 0.02), and butyrate, isobutyrate, isovalerate and acetate : propionate ratio were decreased (P ≤ 0.04) by chitosan. Chitosan had no effect (P > 0.25) on acetate, pH and NH3 ruminal concentration. Glucose, urea, and hepatic enzyme concentrations in the blood were similar (P > 0.30) among treatments. Nitrogen balance was not affected, but chitosan increased milk nitrogen (P = 0.02). Microbial protein synthesis was not affected by chitosan (P > 0.44). Chitosan increased (P = 0.02) milk yield, fat-corrected milk, protein and lactose production. Chitosan changes ruminal fermentation and improves milk yield of lactating dairy cows; therefore, we conclude that chitosan can be used as a rumen modulator instead of ionophores in diets for dairy cows.





2013 ◽  
Vol 13 (2) ◽  
pp. 59-67 ◽  
Author(s):  
Syapura Syapura ◽  
Muhamad Bata ◽  
Wardhana Surya Pratama

Improving of rice straw quality and its effect on ability nutrient digestibility and rumen metabolism products of buffalo in-vitro with feces as inoculum source ABSTRACT.  This study was aimed to determine the effect of feeding  ammoniated rice straw plus concentrate on buffalo nutrient digestibility and rumen fermentation products by in vitro. The Research was carried out by using  experimental method, designed according to completely  randomized design (CRD). The source of inoculum was obtain from different feces of three  buffalos kept in  Datar Village of Purwokerto region fed  rice straw, rice straw plus concentrate and rice straw ammoniated plus concentrate with dry matter ratio of 80 : 20. The treatments tested consisted of three treatments, namely R0 =  control feed using rice straw; R1 = the use of rice straw plus concentrate with a ratio of  (DM basis) 80:20; R2 = the use of ammoniated rice straw plus concentrate with a ratio of (DM basis) 80:20. The treatments were repeated 7 times, so there were 21 experimental units. The Variables measured included total VFA, Ratio A/P, N-NH3, Microbial Protein Synthesis (MPS),   Dry Matter and Organic Matter Digestibility. The result of this study showed that the treatment had an effect significant (P0.05) on the concentration of VFA, Ratio A/P,  N-NH3,  Microbial Protein Synthesis (MPS), and Dry Matter and Organic Matter Digestibility. The HSD test showed that the highest production of  VFA,Ratio A/P, N-NH3, Microbial Protein Synthesis (MPS), Dry Matter and Organic Matter Digestibility were achieved at R2 followed by R1 and R0 respectively. The conclusion is that the ammoniated rice straw supplemented with concentrate can be recommended to be fed to buffalo



1985 ◽  
Vol 65 (1) ◽  
pp. 101-111 ◽  
Author(s):  
L. M. RODE ◽  
D. C. WEAKLEY ◽  
L. D. SATTER

Lactating Holstein cows fitted with ruminal and duodenal T-type cannulae were used in two studies to determine the effect of forage: concentrate ratio and forage particle size on site of nutrient digestion and microbial protein synthesis. In exp. 1, cows were fed alfalfa hay at 24, 38, 58 and 80% of total dry matter intake. Organic matter (OM) digestion in the total tract (OMD) increased with increasing concentrate level but apparent ruminal OM digestion (AROMD) was unaffected by diet. Digestion of acid detergent fiber (ADF) was similar among the higher forage diets, but was depressed at the 24% forage level. Efficiency of microbial protein synthesis (MPS) was depressed by high concentrate diets and was positively correlated (P < 0.05) to turnover rate within the rumen. In exp. 2, cows were fed 20% concentrate and 80% alfalfa hay in long, chopped or ground and pelleted form. AROMD was lower with ground hay but OMD was unaffected by diet. Digestibility of ADF in the rumen was lower with ground hay, but was partially compensated for by increased hindgut digestion of ADF. Flow of feed plus endogenous nitrogen (N) at the duodenum was 37% and 47% on N intake with long and ground hay, respectively. Efficiency of MPS increased 15% and postruminal N digestion increased 36% when ground hay replaced long hay. Efficiency of MPS was directly related to ruminal solids turnover rate and inversely related to liquid dilution rate. These results demonstrate improvements in efficiency of MPS with either increasing amounts of forage in the diet or increased ruminal passage of solids. Key words: Digestion, microbial protein, rate of passage, cattle, rumen forage



2021 ◽  
Vol 34 (2) ◽  
pp. 205-212
Author(s):  
Jian Ma ◽  
Chen Ma ◽  
Xue Fan ◽  
Ali Mujtaba Shah ◽  
Jiang Mao

Objective: The purpose of present study was to investigate the effects of condensed molasses fermentation solubles (CMS) on lactation performance, rumen fermentation, nutrient digestibility, and serum parameters of dairy cows.Methods: A total of 75 healthy Holstein cows with the same parity (milk production = 35±2.5 kg, body weight = 570±28 kg) were randomly selected and divided into 5 groups. One group served as control group (CON; no CMS), whereas the other 4 groups were CMS1 (accounted for 1% of the diet), CMS2 (2%), CMS3 (3%), and CMS4 (4%). All cows were fed regularly three times each day at 0800, 1600, and 2400 h. Cows received diet and water <i>ad libitum</i>. The experiment lasted for 60 days.Results: Results showed that the dry matter intake, milk yield, and protein of CMS2 were maximum and higher (p<0.05) than CMS4. The ruminal pH was observed less than 6 in CMS3 and CMS4 groups. No noticeable difference of microbial protein was found between CON and CMS2 groups, while the microbial protein in these groups was higher (p<0.05) than CMS3 and CMS4 groups. The apparent digestibility of dry matter, organic matter, and crude protein in CMS2 group was higher (p<0.05) than CMS3 and CMS4 groups. Compared to CMS3 and CMS4 groups, the CMS2 group increased (p<0.05) the serum concentrations of immunoglobulin G and immunoglobulin M on d 60.Conclusion: Therefore, it is practicable that CMS substitutes for a part of concentrates in lactating cows’ diets, but higher addition of CMS (more than 3% of the diet) could decrease production performance of dairy cows as seen in the present study.



2013 ◽  
Vol 96 (3) ◽  
pp. 1727-1734 ◽  
Author(s):  
W. Zhu ◽  
Y. Fu ◽  
B. Wang ◽  
C. Wang ◽  
J.A. Ye ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document