scholarly journals R117H mutation of the gene encoding the cystic fibrosis transmembrane regulatory protein in patients with chronic relapsing pancreatitis

2019 ◽  
Vol 54 (4) ◽  
pp. 647-652
Author(s):  
Rodica BUGAI ◽  
◽  
Lucia MAZUR-NICORICI ◽  
Ion TIBIRNA ◽  
Minodora MAZUR ◽  
...  
2020 ◽  
Vol 21 (2) ◽  
pp. 452 ◽  
Author(s):  
Samuel Estabrooks ◽  
Jeffrey L. Brodsky

Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.


2020 ◽  
Vol 477 (13) ◽  
pp. 2561-2580
Author(s):  
João D. Santos ◽  
Francisco R. Pinto ◽  
João F. Ferreira ◽  
Margarida D. Amaral ◽  
Manuela Zaccolo ◽  
...  

Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 123
Author(s):  
Aravind Thavamani ◽  
Iman Salem ◽  
Thomas J. Sferra ◽  
Senthilkumar Sankararaman

Cystic fibrosis (CF) is the most common lethal, multisystemic genetic disorder in Caucasians. Mutations in the gene encoding the cystic fibrosis transmembrane regulator (CFTR) protein are responsible for impairment of epithelial anionic transport, leading to impaired fluid regulation and pH imbalance across multiple organs. Gastrointestinal (GI) manifestations in CF may begin in utero and continue throughout the life, resulting in a chronic state of an altered intestinal milieu. Inherent dysfunction of CFTR leads to dysbiosis of the gut. This state of dysbiosis is further perpetuated by acquired factors such as use of antibiotics for recurrent pulmonary exacerbations. Since the gastrointestinal microbiome and their metabolites play a vital role in nutrition, metabolic, inflammatory, and immune functions, the gut dysbiosis will in turn impact various manifestations of CF—both GI and extra-GI. This review focuses on the consequences of gut dysbiosis and its metabolic implications on CF disease and possible ways to restore homeostasis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dongshan Yang ◽  
Xiubin Liang ◽  
Brooke Pallas ◽  
Mark Hoenerhoff ◽  
Zhuoying Ren ◽  
...  

Cystic Fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). The most common mutation is the deletion of phenylalanine residue at position 508 (ΔF508). Here we report the production of CFTR-ΔF508 rabbits by CRISPR/Cas9-mediated gene editing. After microinjection and embryo transfer, 77 kits were born, of which five carried the ΔF508 mutation. To confirm the germline transmission, one male ΔF508 founder was bred with two wild-type females and produced 16 F1 generation kits, of which six are heterozygous ΔF508/WT animals. Our work adds CFTR-ΔF508 rabbits to the toolbox of CF animal models for biomedical research.


2008 ◽  
Vol 295 (2) ◽  
pp. L240-L263 ◽  
Author(s):  
Christopher S. Rogers ◽  
William M. Abraham ◽  
Kim A. Brogden ◽  
John F. Engelhardt ◽  
John T. Fisher ◽  
...  

Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.


Sign in / Sign up

Export Citation Format

Share Document