Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid–derived mesenchymal stem cells regulated by stromal cell–derived factor-1α in a sciatic nerve injury model

2012 ◽  
Vol 116 (6) ◽  
pp. 1357-1367 ◽  
Author(s):  
Dar-Yu Yang ◽  
Meei-Ling Sheu ◽  
Hong-Lin Su ◽  
Fu-Chou Cheng ◽  
Ying-Ju Chen ◽  
...  

Object Human amniotic fluid–derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration. The expression of stromal cell–derived factor-1α (SDF-1α) in the injured nerve exerts a trophic effect by recruiting progenitor cells that promote nerve regeneration. In this study, the authors investigated the feasibility of intravenous administration of AFMSCs according to SDF-1α expression time profiles to facilitate neural regeneration in a sciatic nerve crush injury model. Methods Peripheral nerve injury was induced in 63 Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The animals were randomized into 1 of 3 groups: Group I, crush injury as the control; Group II, crush injury and intravenous administration of AFMSCs (5 × 106 cells for 3 days) immediately after injury (early administration); and Group III, crush injury and intravenous administration of AFMSCs (5 × 106 cells for 3 days) 7 days after injury (late administration). Evaluation of neurobehavior, electrophysiological study, and assessment of regeneration markers were conducted every week after injury. The expression of SDF-1α and neurotrophic factors and the distribution of AFMSCs in various time profiles were also assessed. Results Stromal cell–derived factor-1α increased the migration and wound healing of AFMSCs in vitro, and the migration ability was dose dependent. Crush injury induced the expression of SDF-1α at a peak of 10–14 days either in nerve or muscle, and this increased expression paralleled the expression of its receptor, chemokine receptor type-4 (CXCR-4). Most AFMSCs were distributed to the lung during early or late administration. Significant deposition of AFMSCs in nerve and muscle only occurred in the late administration group. Significantly enhanced neurobehavior, electrophysiological function, nerve myelination, and expression of neurotrophic factors and acetylcholine receptor were demonstrated in the late administration group. Conclusions Amniotic fluid–derived mesenchymal stem cells can be recruited by expression of SDF-1α in muscle and nerve after nerve crush injury. The increased deposition of AFMSCs paralleled the expression profiles of SDF-1α and its receptor CXCR-4 in either muscle or nerve. Administration of AFMSCs led to improvements in neurobehavior and expression of regeneration markers. Intravenous administration of AFMSCs may be a promising alternative treatment strategy in peripheral nerve disorder.

2010 ◽  
Vol 112 (4) ◽  
pp. 868-879 ◽  
Author(s):  
Fu-Chou Cheng ◽  
Ming-Hong Tai ◽  
Meei-Ling Sheu ◽  
Chun-Jung Chen ◽  
Dar-Yu Yang ◽  
...  

Object Human amniotic fluid–derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration, and the local delivery of neurotrophic factors may additionally enhance nerve regeneration capacity. The present study evaluates whether the transplantation of glia cell line–derived neurotrophic factor (GDNF)–modified human AFMSCs may enhance regeneration of sciatic nerve after a crush injury. Methods Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. Either GDNF-modified human AFMSCs or human AFMSCs were embedded in Matrigel and delivered to the injured nerve. Motor function and electrophysiological studies were conducted after 1 and 4 weeks. Early or later nerve regeneration markers were used to evaluate nerve regeneration. The expression of GDNF in the transplanted human AFMSCs and GDNF-modified human AFMSCs was monitored at 7-day intervals. Results Human AFMSCs were successfully transfected with adenovirus, and a significant amount of GDNF was detected in human AFMSCs or the culture medium supernatant. Increases in the sciatic nerve function index, the compound muscle action potential ratio, conduction latency, and muscle weight were found in the groups treated with human AFMSCs or GDNF-modified human AFMSCs. Importantly, the GDNF-modified human AFMSCs induced the greatest improvement. Expression of markers of early nerve regeneration, such as increased expression of neurofilament and BrdU and reduced Schwann cell apoptosis, as well as late regeneration markers, consisting of reduced vacuole counts, increased expression of Luxol fast blue and S100 protein, paralleled the results of motor function. The expression of GDNF in GDNF-modified human AFMSCs was demonstrated up to 4 weeks; however, the expression decreased over time. Conclusions The GDNF-modified human AFMSCs appeared to promote nerve regeneration. The consecutive expression of GDNF was demonstrated in GDNF-modified human AFMSCs up to 4 weeks. These findings support a nerve regeneration scenario involving cell transplantation with additional neurotrophic factor secretion.


2009 ◽  
Vol 60 (3) ◽  
pp. 813-823 ◽  
Author(s):  
Toshiyuki Kitaori ◽  
Hiromu Ito ◽  
Edward M. Schwarz ◽  
Ryosuke Tsutsumi ◽  
Hiroyuki Yoshitomi ◽  
...  

2018 ◽  
Vol 56 (3) ◽  
pp. 1812-1824 ◽  
Author(s):  
Vesna Bucan ◽  
Desiree Vaslaitis ◽  
Claas-Tido Peck ◽  
Sarah Strauß ◽  
Peter M. Vogt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document