Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors

2014 ◽  
Vol 121 (2) ◽  
pp. 349-358 ◽  
Author(s):  
Maria Luisa Mandelli ◽  
Mitchel S. Berger ◽  
Monica Bucci ◽  
Jeffrey I. Berman ◽  
Bagrat Amirbekian ◽  
...  

Object The aim of this paper was to validate the diffusion tensor imaging (DTI) model for delineation of the corticospinal tract using cortical and subcortical white matter electrical stimulation for the location of functional motor pathways. Methods The authors compare probabilistic versus deterministic DTI fiber tracking by reconstructing the pyramidal fiber tracts on preoperatively acquired DTI in patients with brain tumors. They determined the accuracy and precision of these 2 methods using subcortical stimulation points and the sensitivity using cortical stimulation points. The authors further explored the reliability of these methods by estimation of the potential that the found connections were due to a random chance using a novel neighborhood permutation method. Results The probabilistic tracking method delineated tracts that were significantly closer to the stimulation points and was more sensitive than deterministic DTI fiber tracking to define the tracts directed to the motor sites. However, both techniques demonstrated poor sensitivity to finding lateral motor regions. Conclusions This study highlights the importance of the validation and quantification of preoperative fiber tracking with the aid of electrophysiological data during the surgery. The poor sensitivity of DTI to delineate lateral motor pathways reported herein suggests that DTI fiber tracking must be used with caution and only as adjunctive data to established methods for motor mapping.

2017 ◽  
Vol 126 (3) ◽  
pp. 1006-1014 ◽  
Author(s):  
Chiara Negwer ◽  
Nico Sollmann ◽  
Sebastian Ille ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
...  

OBJECTIVE Diffusion tensor imaging (DTI) fiber tracking (FT) has been widely used in glioma surgery in recent years. It can provide helpful information about subcortical structures, especially in patients with eloquent space-occupying lesions. This study compared the newly developed navigated transcranial magnetic stimulation (nTMS)-based DTI FT of language pathways with the most reproducible protocol for language pathway tractography, using cubic regions of interest (ROIs) for the arcuate fascicle. METHODS Thirty-seven patients with left-sided perisylvian lesions underwent language mapping by repetitive nTMS. DTI FT was performed using the cubic ROIs–based protocol and the authors' nTMS-based DTI FT approach. The same minimal fiber length and fractional anisotropy were chosen (50 mm and 0.2, respectively). Both protocols were performed with standard clinical tractography software. RESULTS Both methods visualized language-related fiber tracts (i.e., corticonuclear tract, arcuate fascicle, uncinate fascicle, superior longitudinal fascicle, inferior longitudinal fascicle, arcuate fibers, commissural fibers, corticothalamic fibers, and frontooccipital fascicle) in all 37 patients. Using the cubic ROIs-based protocol, 39.9% of these language-related fiber tracts were detected in the examined patients, as opposed to 76.0% when performing nTMS-based DTI FT. For specifically tracking the arcuate fascicle, however, the cubic ROIs-based approach showed better results (97.3% vs 75.7% with nTMS-based DTI FT). CONCLUSIONS The cubic ROIs-based protocol was designed for arcuate fascicle tractography, and this study shows that it is still useful for this intention. However, superior results were obtained using the nTMS-based DTI FT for visualization of other language-related fiber tracts.


2009 ◽  
Vol 52 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Raimund Kleiser ◽  
Philipp Staempfli ◽  
Anton Valavanis ◽  
Peter Boesiger ◽  
Spyros Kollias

Neurosurgery ◽  
2021 ◽  
Author(s):  
Fraser Henderson Jr ◽  
Drew Parker ◽  
Anupa A Vijayakumari ◽  
Mark Elliott ◽  
Timothy Lucas ◽  
...  

Abstract BACKGROUND A limitation of diffusion tensor imaging (DTI)-based tractography is peritumoral edema that confounds traditional diffusion-based magnetic resonance metrics. OBJECTIVE To augment fiber-tracking through peritumoral regions by performing novel edema correction on clinically feasible DTI acquisitions and assess the accuracy of the fiber-tracks using intraoperative stimulation mapping (ISM), task-based functional magnetic resonance imaging (fMRI) activation maps, and postoperative follow-up as reference standards. METHODS Edema correction, using our bi-compartment free water modeling algorithm (FERNET), was performed on clinically acquired DTI data from a cohort of 10 patients presenting with suspected high-grade glioma and peritumoral edema in proximity to and/or infiltrating language or motor pathways. Deterministic fiber-tracking was then performed on the corrected and uncorrected DTI to identify tracts pertaining to the eloquent region involved (language or motor). Tracking results were compared visually and quantitatively using mean fiber count, voxel count, and mean fiber length. The tracts through the edematous region were verified based on overlay with the corresponding motor or language task-based fMRI activation maps and intraoperative ISM points, as well as at time points after surgery when peritumoral edema had subsided. RESULTS Volume and number of fibers increased with application of edema correction; concordantly, mean fractional anisotropy decreased. Overlay with functional activation maps and ISM-verified eloquence of the increased fibers. Comparison with postsurgical follow-up scans with lower edema further confirmed the accuracy of the tracts. CONCLUSION This method of edema correction can be applied to standard clinical DTI to improve visualization of motor and language tracts in patients with glioma-associated peritumoral edema.


Author(s):  
Abderrazek Zeraii ◽  
Amine Ben Slama ◽  
Lazhar Rmili ◽  
Cyrine Drissi ◽  
Mokhtar Mars ◽  
...  

Stroke remains the leading source of long-term disability. As the only direct descending motor pathway, the corticospinal tract (CST) is the primary pathway to innervate spinal motor neurons and one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many distinguished traumatic situations and diseases such as stroke. Along‐tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities. In this study, we extracted DTI derived quantitative microstructural diffusion metrics along the CST tract in patients with moderate to severe subacute stroke. Respectively DTI metric of individual patient's fiber tract was then plotted. This approach may be useful for future studies that may compare in two different time (acute and chronic). The contribution of this work presents a totally computerized method of DTI image recognition based on conventional neural network (CNN) in order to supply quantitative appraisal of clinical characteristics. The obtained results have achieved an important classification (Accuracy=94.12%) when applying the CNN. The proposed methodology enables us to assess the classification of the used DTI images database within a reduced processing time. Experimental results prove the success of the proposed rating system for a suitable analysis of microstructural diffusion when compared to previous work.


2007 ◽  
Vol 103 (2) ◽  
pp. 673-681 ◽  
Author(s):  
Drew A. Lansdown ◽  
Zhaohua Ding ◽  
Megan Wadington ◽  
Jennifer L. Hornberger ◽  
Bruce M. Damon

Diffusion-tensor magnetic resonance imaging (DT-MRI) offers great potential for understanding structure-function relationships in human skeletal muscles. The purposes of this study were to demonstrate the feasibility of using in vivo human DT-MRI fiber tracking data for making pennation angle measurements and to test the hypothesis that heterogeneity in the orientation of the tibialis anterior (TA) muscle's aponeurosis would lead to heterogeneity in pennation angle. Eight healthy subjects (5 male) were studied. T1-weighted anatomical MRI and DT-MRI data were acquired of the TA muscle. Fibers were tracked from the TA's aponeurosis by following the principal eigenvector. The orientations of the aponeurosis and muscle fiber tracts in the laboratory frame of reference and the orientation of the fiber tracts with respect to the aponeurosis [i.e., the pennation angle (θ)] were determined. The muscle fiber orientations, when expressed relative to the laboratory frame of reference, did not change as functions of superior-to-inferior position. The sagittal and coronal orientations of the aponeurosis did not change in practically significant manners either, but the aponeurosis′ axial orientation changed by ∼40°. As a result, the mean value for θ decreased from 16.3 (SD 6.9) to 11.4° (SD 5.0) along the muscle's superior-to-inferior direction. The mean value of θ was greater in the deep than in the superficial compartment. We conclude that pennation angle measurements of human muscle made using DT-MRI muscle fiber tracking are feasible and reveal that in the foot-head direction, there is heterogeneity in the pennation properties of the human TA muscle.


2007 ◽  
Vol 07 (04) ◽  
pp. 749-765 ◽  
Author(s):  
DANMARY SANCHEZ ◽  
MALEK ADJOUADI ◽  
NOLAN R. ALTMAN ◽  
DANIEL SANCHEZ ◽  
BYRON BERNAL

Comprehensive spatial visualization of fiber tracts from all perspectives is a highly desirable outcome in brain studies. To achieve this aim, this study establishes the foundation for a new 3D visual interface that integrates Magnetic Resonance Imaging (MRI) to Diffusion Tensor Imaging (DTI). The need for such an interface is critical for understanding brain dynamics, and for providing accurate diagnosis of key brain dysfunctions, in terms of neuronal connectivity in the human brain. Two research fronts were explored: (1) the development of new image processing techniques resulting in comprehensive visualization mechanisms that accurately establish relational positioning of neuronal fiber tracts and key landmarks in semi-transparent 3D brain images, and (2) the design of key algorithms that do not tax the computational requirements of 3D rendering and feature extraction using 2D MRI and DTI frames, remaining within practical time constraints. The system was evaluated using data from thirty patients and volunteers with the Brain Institute at Miami Children's Hospital. The highly integrated and fully embedded fiber-tracking software system provides an optimal research environment for innovative visualization mechanisms of white matter fiber tracts. This 3D visualization system reached the implementation level that makes it ready for deployment at other clinical sites.


2019 ◽  
Vol 12 (2) ◽  
pp. 440
Author(s):  
C. Negwer ◽  
I. Rautu ◽  
N. Sollmann ◽  
S. Ille ◽  
B. Meyer ◽  
...  

2017 ◽  
Vol 126 (1) ◽  
pp. 222-233 ◽  
Author(s):  
Nico Sollmann ◽  
Chiara Negwer ◽  
Lorena Tussis ◽  
Theresa Hauck ◽  
Sebastian Ille ◽  
...  

OBJECTIVE Resection of brain tumors in language-eloquent areas entails the risk of postoperative aphasia. It has been demonstrated via navigated transcranial magnetic stimulation (nTMS) that language function can partially shift to the unaffected hemisphere due to tumor-induced plasticity. Therefore, this study was designed to evaluate whether interhemispheric connectivity (IC) detected by nTMS-based diffusion tensor imaging–fiber tracking (DTI-FT) can be used to predict surgery-related aphasia in patients with brain tumors. METHODS Thirty-eight patients with left-sided perisylvian brain lesions underwent cortical language mapping of both hemispheres by nTMS prior to awake surgery. Then, nTMS-based DTI-FT was conducted with a fractional anisotropy (FA) of 0.01 and 0.2 to visualize nTMS-based IC. Receiver operating characteristics were calculated for the prediction of a postoperative (irrespective of the preoperative state) and a new surgery-related aphasia by the presence of detectable IC. RESULTS Language mapping by nTMS was possible in all patients. Seventeen patients (44.7%) suffered from surgery-related worsening of language performance (transient aphasia according to 3-month follow-up in 16 subjects [42.1%]; new permanent aphasia according to 3-month follow-up in 1 patient [2.6%]). Regarding the correlation of aphasia to nTMS-based IC, statistically significant differences were revealed for both evaluated FA values. However, better results were observed for tractography with an FA of 0.2, which led to a specificity of 93% (postoperative aphasia) and 90% (surgery-related aphasia). For postoperative aphasia, the corresponding OR was 0.1282 (95% CI 0.0143–1.1520), and for surgery-related aphasia the OR was 0.1184 (95% CI 0.0208–0.6754). CONCLUSIONS According to these results, IC detected by preoperative nTMS-based DTI-FT might be regarded as a risk factor for surgery-related aphasia, with a specificity of up to 93%. However, because the majority of enrolled patients suffered from transient aphasia postoperatively, it has to be evaluated whether this approach distinctly leads to similar results among patients with permanent language deficits. Despite this restriction, this approach might contribute to individualized patient consultation prior to tumor resection in clinical practice.


2017 ◽  
Vol 18 (5) ◽  
pp. 844 ◽  
Author(s):  
Zhi-gang Min ◽  
Chen Niu ◽  
Qiu-li Zhang ◽  
Ming Zhang ◽  
Yu-cheng Qian

Sign in / Sign up

Export Citation Format

Share Document