Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity

2014 ◽  
Vol 21 (6) ◽  
pp. 994-1003 ◽  
Author(s):  
Justin S. Smith ◽  
Ellen Shaffrey ◽  
Eric Klineberg ◽  
Christopher I. Shaffrey ◽  
Virginie Lafage ◽  
...  

Object Improved understanding of rod fracture (RF) following adult spinal deformity (ASD) surgery could prove valuable for surgical planning, patient counseling, and implant design. The objective of this study was to prospectively assess the rates of and risk factors for RF following surgery for ASD. Methods This was a prospective, multicenter, consecutive series. Inclusion criteria were ASD, age > 18 years, ≥5 levels posterior instrumented fusion, baseline full-length standing spine radiographs, and either development of RF or full-length standing spine radiographs obtained at least 1 year after surgery that demonstrated lack of RF. ASD was defined as presence of at least one of the following: coronal Cobb angle ≥20°, sagittal vertical axis (SVA) ≥5 cm, pelvic tilt (PT) ≥25°, and thoracic kyphosis ≥60°. Results Of 287 patients who otherwise met inclusion criteria, 200 (70%) either demonstrated RF or had radiographic imaging obtained at a minimum of 1 year after surgery showing lack of RF. The patients' mean age was 54.8 ± 15.8 years; 81% were women; 10% were smokers; the mean body mass index (BMI) was 27.1 ± 6.5; the mean number of levels fused was 12.0 ± 3.8; and 50 patients (25%) had a pedicle subtraction osteotomy (PSO). The rod material was cobalt chromium (CC) in 53%, stainless steel (SS), in 26%, or titanium alloy (TA) in 21% of cases; the rod diameters were 5.5 mm (in 68% of cases), 6.0 mm (in 13%), or 6.35 mm (in 19%). RF occurred in 18 cases (9.0%) at a mean of 14.7 months (range 3–27 months); patients without RF had a mean follow-up of 19 months (range 12–24 months). Patients with RF were older (62.3 vs 54.1 years, p = 0.036), had greater BMI (30.6 vs 26.7, p = 0.019), had greater baseline sagittal malalignment (SVA 11.8 vs 5.0 cm, p = 0.001; PT 29.1° vs 21.9°, p = 0.016; and pelvic incidence [PI]–lumbar lordosis [LL] mismatch 29.6° vs 12.0°, p = 0.002), and had greater sagittal alignment correction following surgery (SVA reduction by 9.6 vs 2.8 cm, p < 0.001; and PI-LL mismatch reduction by 26.3° vs 10.9°, p = 0.003). RF occurred in 22.0% of patients with PSO (10 of the 11 fractures occurred adjacent to the PSO level), with rates ranging from 10.0% to 31.6% across centers. CC rods were used in 68% of PSO cases, including all with RF. Smoking, levels fused, and rod diameter did not differ significantly between patients with and without RF (p > 0.05). In cases including a PSO, the rate of RF was significantly higher with CC rods than with TA or SS rods (33% vs 0%, p = 0.010). On multivariate analysis, only PSO was associated with RF (p = 0.001, OR 5.76, 95% CI 2.01–15.8). Conclusions Rod fracture occurred in 9.0% of ASD patients and in 22.0% of PSO patients with a minimum of 1-year follow-up. With further follow-up these rates would likely be even higher. There was a substantial range in the rate of RF with PSO across centers, suggesting potential variations in technique that warrant future investigation. Due to higher rates of RF with PSO, alternative instrumentation strategies should be considered for these cases.

2021 ◽  
pp. 1-12
Author(s):  
Emily P. Rabinovich ◽  
Thomas J. Buell ◽  
Tony R. Wang ◽  
Christopher I. Shaffrey ◽  
Justin S. Smith

OBJECTIVE Rod fracture (RF) after adult spinal deformity (ASD) surgery is reported in approximately 6.8%–33% of patients and is associated with loss of deformity correction and higher reoperation rates. The authors’ objective was to determine the effect of accessory supplemental rod (ASR) placement on postoperative occurrence of primary RF after ASD surgery. METHODS This retrospective analysis examined patients who underwent ASD surgery between 2014 and 2017 by the senior authors. Inclusion criteria were age > 18 years, ≥ 5 instrumented levels including sacropelvic fixation, and diagnosis of ASD, which was defined as the presence of pelvic tilt ≥ 25°, sagittal vertical axis ≥ 5 cm, thoracic kyphosis ≥ 60°, coronal Cobb angle ≥ 20°, or pelvic incidence to lumbar lordosis mismatch ≥ 10°. The primary focus was patients with a minimum 2-year follow-up. RESULTS Of 148 patients who otherwise met the inclusion criteria, 114 (77.0%) achieved minimum 2-year follow-up and were included (68.4% were women, mean age 67.9 years, average body mass index 30.4 kg/m2). Sixty-two (54.4%) patients were treated with traditional dual-rod construct (DRC), and 52 (45.6%) were treated with ASR. Overall, the mean number of levels fused was 11.7, 79.8% of patients underwent Smith-Petersen osteotomy (SPO), 19.3% underwent pedicle subtraction osteotomy (PSO), and 66.7% underwent transforaminal lumbar interbody fusion (TLIF). Significantly more patients in the DRC cohort underwent SPO (88.7% of the DRC cohort vs 69.2% of the ASR cohort, p = 0.010) and TLIF (77.4% of the DRC cohort vs 53.8% of the ASR cohort, p = 0.0001). Patients treated with ASR had greater baseline sagittal malalignment (12.0 vs 8.6 cm, p = 0.014) than patients treated with DRC, and more patients in the ASR cohort underwent PSO (40.3% vs 1.6%, p < 0.0001). Among the 114 patients who completed follow-up, postoperative occurrence of RF was reported in 16 (14.0%) patients, with mean ± SD time to RF of 27.5 ± 11.8 months. There was significantly greater occurrence of RF among patients who underwent DRC compared with those who underwent ASR (21.0% vs 5.8%, p = 0.012) at comparable mean follow-up (38.4 vs 34.9 months, p = 0.072). Multivariate analysis demonstrated that ASR had a significant protective effect against RF (OR 0.231, 95% CI 0.051–0.770, p = 0.029). CONCLUSIONS This study demonstrated a statistically significant decrease in the occurrence of RF among ASD patients treated with ASR, despite greater baseline deformity and higher rate of PSO. These findings suggest that ASR placement may provide benefit to patients who undergo ASD surgery.


2020 ◽  
pp. 1-14
Author(s):  
Thomas J. Buell ◽  
Justin S. Smith ◽  
Christopher I. Shaffrey ◽  
Han Jo Kim ◽  
Eric O. Klineberg ◽  
...  

OBJECTIVEThe impact of global coronal malalignment (GCM; C7 plumb line–midsacral offset) on adult spinal deformity (ASD) treatment outcomes is unclear. Here, the authors’ primary objective was to assess surgical outcomes and complications in patients with severe GCM, with a secondary aim of investigating potential surgical target coronal thresholds for optimal outcomes.METHODSThis is a retrospective analysis of a prospective multicenter database. Operative patients with severe GCM (≥ 1 SD above the mean) and a minimum 2-year follow-up were identified. Demographic, surgical, radiographic, health-related quality of life (HRQOL), and complications data were analyzed.RESULTSOf 691 potentially eligible operative patients (mean GCM 4 ± 3 cm), 80 met the criteria for severe GCM ≥ 7 cm. Of these, 62 (78%; mean age 63.7 ± 10.7 years, 81% women) had a minimum 2-year follow-up (mean follow-up 3.3 ± 1.1 years). The mean ASD–Frailty Index was 3.9 ± 1.5 (frail), 50% had undergone prior fusion, and 81% had concurrent severe sagittal spinopelvic deformity with GCM and C7–S1 sagittal vertical axis (SVA) positively correlated (r = 0.313, p = 0.015). Surgical characteristics included posterior-only (58%) versus anterior-posterior (42%) approach, mean fusion of 13.2 ± 3.8 levels, iliac fixation (90%), 3-column osteotomy (36%), operative duration of 8.3 ± 3.0 hours, and estimated blood loss of 2.3 ± 1.7 L. Final alignment and HRQOL significantly improved (p < 0.01): GCM, 11 to 4 cm; maximum coronal Cobb angle, 43° to 20°; SVA, 13 to 4 cm; pelvic tilt, 29° to 23°; pelvic incidence–lumbar lordosis mismatch, 31° to 5°; Oswestry Disability Index, 51 to 37; physical component summary of SF-36 (PCS), 29 to 37; 22-Item Scoliosis Research Society Patient Questionnaire (SRS-22r) Total, 2.6 to 3.5; and numeric rating scale score for back and leg pain, 7 to 4 and 5 to 3, respectively. Residual GCM ≥ 3 cm was associated with worse SRS-22r Appearance (p = 0.04) and SRS-22r Satisfaction (p = 0.02). The minimal clinically important difference and/or substantial clinical benefit (MCID/SCB) was met in 43%–83% (highest for SRS-22r Appearance [MCID 83%] and PCS [SCB 53%]). The severity of baseline GCM (≥ 2 SD above the mean) significantly impacted postoperative SRS-22r Satisfaction and MCID/SCB improvement for PCS. No significant partial correlations were demonstrated between GCM or SVA correction and HRQOL improvement. There were 89 total complications (34 minor and 55 major), 45 (73%) patients with ≥ 1 complication (most commonly rod fracture [19%] and proximal junctional kyphosis [PJK; 18%]), and 34 reoperations in 22 (35%) patients (most commonly for rod fracture and PJK).CONCLUSIONSStudy results demonstrated that ASD surgery in patients with substantial GCM was associated with significant radiographic and HRQOL improvement despite high complication rates. MCID improvement was highest for SRS-22r Appearance/Self-Image. A residual GCM ≥ 3 cm was associated with a worse outcome, suggesting a potential coronal realignment target threshold to assist surgical planning.


2020 ◽  
Vol 32 (3) ◽  
pp. 407-414
Author(s):  
Jong-myung Jung ◽  
Seung-Jae Hyun ◽  
Ki-Jeong Kim ◽  
Tae-Ahn Jahng

OBJECTIVEThis study investigated the incidence and risk factors of rod fracture (RF) after multiple-rod constructs (MRCs) for adult spinal deformity (ASD) surgery.METHODSA single-center, single-surgeon consecutive series of adult patients who underwent posterior thoracolumbar fusion at 4 or more levels using MRCs after osteotomy with at least 1 year of follow-up were retrospectively reviewed. Patient characteristics, radiological parameters, operative data, and clinical outcomes (on the Scoliosis Research Society-22r questionnaire) were analyzed at baseline and follow-up.RESULTSSeventy-six patients were enrolled in this study. RF occurred in 9 patients (11.8%), with all cases involving partial rod breakage. Seven patients (9.2%) underwent revision surgery. There were no significant differences in baseline demographic characteristics, radiological parameters, and surgical factors between the RF and non-RF groups. Multivariable analysis revealed that interbody fusion at the L5–S1 and L4–S1 levels could significantly reduce the occurrence of RF after MRCs for ASD (adjusted odds ratios 0.070 and 0.035, respectively). The RF group had significantly worse function score (mean 2.9 ± 0.8 vs 3.5 ± 0.7) and pain score (mean 2.8 ± 1.0 vs 3.5 ± 0.8) compared with the non-RF group at last visit.CONCLUSIONSRF occurred in 11.8% of patients with MRCs after ASD surgery. Most RFs occurred at the lumbosacral junction or adjacent level (77%). Interbody fusion at the lumbosacral junction (L5–S1 or L4–S1 level) could significantly prevent the occurrence of RF after MRCs for ASD.


2021 ◽  
pp. 1-10
Author(s):  
Ki Young Lee ◽  
Jung-Hee Lee ◽  
Kyung-Chung Kang ◽  
Sang-Kyu Im ◽  
Hae Seong Lim ◽  
...  

OBJECTIVERestoring the proper sagittal alignment in adult spinal deformity (ASD) can improve radiological and clinical outcomes, but pseudarthrosis including rod fracture (RF) is a common problematic complication. The purpose of this study was to analyze the methods for reducing the incidence of RF in deformity correction of ASD.METHODSThe authors retrospectively selected 178 consecutive patients (mean age 70.8 years) with lumbar degenerative kyphosis (LDK) who underwent deformity correction with a minimum 2-year follow-up. Patients were classified into the non-RF group (n = 131) and the RF group (n = 47). For predicting the crucial factors of RF, patient factors, radiographic parameters, and surgical factors were analyzed.RESULTSThe overall incidence of RF was 26% (47/178 cases), occurring in 42% (42/100 cases) of pedicle subtraction osteotomy (PSO), 7% (5/67 cases) of lateral lumbar interbody fusion (LLIF) with posterior column osteotomy, 18% (23/129 cases) of cobalt chrome rods, 49% (24/49 cases) of titanium alloy rods, 6% (2/36 cases) placed with the accessory rod technique, and 32% (45/142 cases) placed with the 2-rod technique. There were no significant differences in the incidence of RF regarding patient factors between two groups. While both groups showed severe sagittal imbalance before operation, lumbar lordosis (LL) was more kyphotic and pelvic incidence (PI) minus LL (PI-LL) mismatch was greater in the RF group (p < 0.05). Postoperatively, while LL and PI-LL did not show significant differences between the two groups, LL and sagittal vertical axis correction were greater in the RF group (p < 0.05). Nonetheless, at the last follow-up, the two groups did not show significant differences in radiographic parameters except thoracolumbar junctional angles. As for surgical factors, use of the cobalt chrome rod and the accessory rod technique was significantly greater in the non-RF group (p < 0.05). As for the correction method, PSO was associated with more RFs than the other correction methods, including LLIF (p < 0.05). By logistic regression analysis, PSO, preoperative PI-LL mismatch, and the accessory rod technique were crucial factors for RF.CONCLUSIONSGreater preoperative sagittal spinopelvic malalignment including preoperative PI-LL mismatch was the crucial risk factor for RF in LDK patients 65 years or older. For restoring and maintaining sagittal alignment, use of the cobalt chrome rod, accessory rod technique, or LLIF was shown to be effective for reducing RF in ASD surgery.


2013 ◽  
Vol 13 (9) ◽  
pp. S8
Author(s):  
David M. Ibrahimi ◽  
Justin S. Smith ◽  
Eric O. Klineberg ◽  
Christopher I. Shaffrey ◽  
Virginie Lafage ◽  
...  

2018 ◽  
Vol 18 (9) ◽  
pp. 1612-1624 ◽  
Author(s):  
Thamrong Lertudomphonwanit ◽  
Michael P. Kelly ◽  
Keith H. Bridwell ◽  
Lawrence G. Lenke ◽  
Steven J. McAnany ◽  
...  

2015 ◽  
Vol 5 (1_suppl) ◽  
pp. s-0035-1554517-s-0035-1554517
Author(s):  
Peter Passias ◽  
Justin Smith ◽  
Alex Soroceanu ◽  
Anthony Boniello ◽  
Justin Scheer ◽  
...  

2020 ◽  
Author(s):  
Mutsuya Shimizu ◽  
Tetsuya Kobayashi ◽  
Hisashi Chiba ◽  
Issei Senoo ◽  
Hiroshi Ito ◽  
...  

Abstract Background: Age-related height loss is a normal physical change that occurs in all individuals over 50 years of age. Although many epidemiological studies on height loss have been conducted worldwide, none have been long-term longitudinal epidemiological studies spanning over 30 years. This study was designed to investigate changes in adult spinal deformity and examine the relationship between adult spinal deformity and height loss.Methods: Fifty-three local healthy subjects (32 men, 21 women) from Furano, Hokkaido, Japan, volunteered for this longitudinal cohort study. Their heights were measured in 1983 and again in 2017. Spino-pelvic parameters were compared between measurements obtained in 1983 and 2017. Individuals with height loss were then divided into two groups, those with degenerative spondylosis and those with degenerative lumbar scoliosis, and different characteristics were compared between the two groups.Results: The mean age of the subjects was 44.4 (31-55) years at baseline and 78.6 (65-89) years at the final follow-up. The mean height was 157.4 cm at baseline and 153.6 cm at the final follow-up, with a mean height loss of 3.8 cm over 34.2 years. All parameters except for thoracic kyphosis were significantly different between measurements taken in 1983 and 2017 (p<0.05). Height loss in both sexes was related to changes in pelvic parameters including pelvic incidence-lumbar lordosis (R=0.460 p=0.008 in men, R=0.553 p=0.012 in women), pelvic tilt (R=0.374 p=0.035 in men, R=0.540 p=0.014 in women), and sagittal vertical axis (R=0.535 p=0.002 in men, R=0.527 p=0.017 in women). Greater height loss was more commonly seen in women (p=0.001) and in patients with degenerative lumbar scoliosis (p=0.02).Conclusions: This longitudinal study revealed that height loss is more commonly observed in women and is associated with adult spinal deformity and degenerative lumbar scoliosis. Height loss is a normal physical change with aging, but excessive height loss is due to spinal kyphosis and scoliosis leading to spinal malalignment. Our findings suggest that height loss might be an early physical symptom for spinal malalignment.


2020 ◽  
Author(s):  
Mutsuya Shimizu ◽  
Tetsuya Kobayashi ◽  
Hisashi Chiba ◽  
Issei Senoo ◽  
Hiroshi Ito ◽  
...  

Abstract Background Age-related height loss is a normal physical change that occurs in all individuals over 50 years of age. Many epidemiological studies were conducted on height loss worldwide, however, over the 30 years longitudinal epidemiological studies have not been conducted. This study was designed to investigate changes in adult spinal deformity and examine the relationship between adult spinal deformity and height loss. Methods Fifty-three local healthy subjects (32 men, 21 women) from Furano, Hokkaido, Japan, volunteered for this longitudinal cohort study. Their heights were measured in 1983 and again in 2017. Spino-pelvic parameters were compared between 1983 and 2017. Individuals with height loss were then divided into two groups, those with degenerative spondylosis and those with degenerative lumbar scoliosis, and different characteristics were compared between the two groups. Results The mean age of the subjects was 44.4 (31-55) years at baseline and 78.6 (65-89) years at the final follow-up. The mean height was 157.4 cm at baseline and 153.6 cm at the final follow-up, with a mean height loss of 3.8 cm over 34.2 years. All parameters except for thoracic kyphosis were significantly different between 1983 and 2017 (p<0.05). Height loss was related to changes in pelvic parameters including pelvic incidence-lumbar lordosis (R=0.553 p<0.0001), pelvic tilt (R=0.462 p<0.0001), and sagittal vertical axis (R=0.514 p<0.0001). Greater height loss was more commonly seen in women (p=0.001) and in patients with degenerative lumbar scoliosis (p=0.02). Conclusions This longitudinal study revealed that height loss is more commonly observed in women and is associated with adult spinal deformity and degenerative lumbar scoliosis. Height loss is a normal physical change with aging, but excessive height loss is due to spinal kyphosis and scoliosis leading to spinal malalignment. Our findings suggest that height loss might be an early physical symptom for spinal malalignment.


Sign in / Sign up

Export Citation Format

Share Document