scholarly journals Endoscopic third ventriculostomy in children: prospective, multicenter results from the Hydrocephalus Clinical Research Network

2016 ◽  
Vol 18 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Abhaya V. Kulkarni ◽  
Jay Riva-Cambrin ◽  
Richard Holubkov ◽  
Samuel R. Browd ◽  
D. Douglas Cochrane ◽  
...  

OBJECTIVE Endoscopic third ventriculostomy (ETV) is now established as a viable treatment option for a subgroup of children with hydrocephalus. Here, the authors report prospective, multicenter results from the Hydrocephalus Clinical Research Network (HCRN) to provide the most accurate determination of morbidity, complication incidence, and efficacy of ETV in children and to determine if intraoperative predictors of ETV success add substantially to preoperative predictors. METHODS All children undergoing a first ETV (without choroid plexus cauterization) at 1 of 7 HCRN centers up to June 2013 were included in the study and followed up for a minimum of 18 months. Data, including detailed intraoperative data, were prospectively collected as part of the HCRN's Core Data Project and included details of patient characteristics, ETV failure (need for repeat hydrocephalus surgery), and, in a subset of patients, postoperative complications up to the time of discharge. RESULTS Three hundred thirty-six eligible children underwent initial ETV, 18.8% of whom had undergone shunt placement prior to the ETV. The median age at ETV was 6.9 years (IQR 1.7–12.6), with 15.2% of the study cohort younger than 12 months of age. The most common etiologies were aqueductal stenosis (24.8%) and midbrain or tectal lesions (21.2%). Visible forniceal injury (16.6%) was more common than previously reported, whereas severe bleeding (1.8%), thalamic contusion (1.8%), venous injury (1.5%), hypothalamic contusion (1.5%), and major arterial injury (0.3%) were rare. The most common postoperative complications were CSF leak (4.4%), hyponatremia (3.9%), and pseudomeningocele (3.9%). New neurological deficit occurred in 1.5% cases, with 0.5% being permanent. One hundred forty-one patients had documented failure of their ETV requiring repeat hydrocephalus surgery during follow-up, 117 of them during the first 6 months postprocedure. Kaplan-Meier rates of 30-day, 90-day, 6-month, 1-year, and 2-year failure-free survival were 73.7%, 66.7%, 64.8%, 61.7%, and 57.8%, respectively. According to multivariate modeling, the preoperative ETV Success Score (ETVSS) was associated with ETV success (p < 0.001), as was the intraoperative ability to visualize a “naked” basilar artery (p = 0.023). CONCLUSIONS The authors' documented experience represents the most detailed account of ETV results in North America and provides the most accurate picture to date of ETV success and complications, based on contemporaneously collected prospective data. Serious complications with ETV are low. In addition to the ETVSS, visualization of a naked basilar artery is predictive of ETV success.

2014 ◽  
Vol 14 (3) ◽  
pp. 224-229 ◽  
Author(s):  
Abhaya V. Kulkarni ◽  
Jay Riva-Cambrin ◽  
Samuel R. Browd ◽  
James M. Drake ◽  
Richard Holubkov ◽  
...  

Object The use of endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) has been advocated as an alternative to CSF shunting in infants with hydrocephalus. There are limited reports of this procedure in the North American population, however. The authors provide a retrospective review of the experience with combined ETV + CPC within the North American Hydrocephalus Clinical Research Network (HCRN). Methods All children (< 2 years old) who underwent an ETV + CPC at one of 7 HCRN centers before November 2012 were included. Data were collected retrospectively through review of hospital records and the HCRN registry. Comparisons were made to a contemporaneous cohort of 758 children who received their first shunt at < 2 years of age within the HCRN. Results Thirty-six patients with ETV + CPC were included (13 with previous shunt). The etiologies of hydrocephalus were as follows: intraventricular hemorrhage of prematurity (9 patients), aqueductal stenosis (8), myelomeningocele (4), and other (15). There were no major intraoperative or early postoperative complications. There were 2 postoperative CSF infections. There were 2 deaths unrelated to hydrocephalus and 1 death from seizure. In 18 patients ETV + CPC failed at a median time of 30 days after surgery (range 4–484 days). The actuarial 3-, 6-, and 12-month success for ETV + CPC was 58%, 52%, and 52%. Time to treatment failure was slightly worse for the 36 patients with ETV + CPC compared with the 758 infants treated with shunts (p = 0.012). Near-complete CPC (≥ 90%) was achieved in 11 cases (31%) overall, but in 50% (10 of 20 cases) in 2012 versus 6% (1 of 16 cases) before 2012 (p = 0.009). Failure was higher in children with < 90% CPC (HR 4.39, 95% CI 0.999–19.2, p = 0.0501). Conclusions The early North American multicenter experience with ETV + CPC in infants demonstrates that the procedure has reasonable safety in selected cases. The degree of CPC achieved might be associated with a surgeon's learning curve and appears to affect success, suggesting that surgeon training might improve results.


Author(s):  
Mandeep S. Tamber ◽  
John R. W. Kestle ◽  
Ron W. Reeder ◽  
Richard Holubkov ◽  
Jessica Alvey ◽  
...  

OBJECTIVEAnalysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.METHODSThe Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.RESULTSThe authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).CONCLUSIONSOver a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.


Author(s):  
Aaron M. Yengo-Kahn ◽  
John C. Wellons ◽  
Todd C. Hankinson ◽  
Jason S. Hauptman ◽  
Eric M. Jackson ◽  
...  

OBJECTIVE Treating Dandy-Walker syndrome–related hydrocephalus (DWSH) involves either a CSF shunt-based or endoscopic third ventriculostomy (ETV)–based procedure. However, comparative investigations are lacking. This study aimed to compare shunt-based and ETV-based treatment strategies utilizing archival data from the Hydrocephalus Clinical Research Network (HCRN) registry. METHODS A retrospective review of prospectively collected and maintained data on children with DWSH, available from the HCRN registry (14 sites, 2008–2018), was performed. The primary outcome was revision-free survival of the initial surgical intervention. The primary exposure was either shunt-based (i.e., cystoperitoneal shunt [CPS], ventriculoperitoneal shunt [VPS], and/or dual-compartment) or ETV-based (i.e., ETV alone or with choroid plexus cauterization [CPC]) initial surgical treatment. Primary analysis included multivariable Cox proportional hazards models. RESULTS Of 8400 HCRN patients, 151 (1.8%) had DWSH. Among these, the 102 patients who underwent shunt placement (79 VPSs, 16 CPSs, 3 other, and 4 multiple proximal catheter) were younger (6.6 vs 18.8 months, p < 0.001) and more frequently had 1 or more comorbidities (37.3% vs 14.3%, p = 0.005) than the 49 ETV-treated children (28 ETV-CPC). Fifty percent of the shunt-based and 51% of the ETV-based treatments failed. Notably, 100% (4/4) of the dual-compartment shunts failed. Adjusting for age, baseline ventricular size, and comorbidities, ETV-based treatment was not significantly associated with earlier failure compared with shunt-based treatment (HR for failure 1.32, 95% CI 0.77–2.26; p = 0.321). Complication rates were low: 4.9% and 6.1% (p = 0.715) for shunt- and ETV-based procedures, respectively. There was no difference in survival between ETV-CPC– and ETV-based treatment when adjusting for age (HR for failure 0.86, 95% CI 0.29–2.55, p = 0.783). CONCLUSIONS In this North American, multicenter, prospective database review, shunt-based and ETV-based primary treatment strategies of DWSH appear similarly durable. Pediatric neurosurgeons can reasonably consider ETV-based initial treatment given the similar durability and the low complication rate. However, given the observational nature of this study, the treating surgeon might need to consider subgroups that were too small for a separate analysis. Very young children with comorbidities were more commonly treated with shunts, and older children with fewer comorbidities were offered ETV-based treatment. Future studies may determine preoperative characteristics associated with ETV treatment success in this population.


Author(s):  
David S. Hersh ◽  
Rahul Kumar ◽  
Paul Klimo ◽  
Markus Bookland ◽  
Jonathan E. Martin

OBJECTIVE Late failure is a well-documented complication of cerebrospinal fluid shunt placement and, less commonly, endoscopic third ventriculostomy (ETV). However, standards regarding the frequency of clinical and radiological follow-up in these patients have not been defined. Here, the authors report on their survey of surgeons at sites for the Hydrocephalus Clinical Research Network (HCRN) or its implementation/quality improvement arm (HCRNq) to provide a cross-sectional overview of practice patterns. METHODS A 24-question survey was developed using the Research Electronic Data Capture (REDCap) platform and was distributed to the 138 pediatric neurosurgeons across 39 centers who participate in the HCRN or HCRNq. Survey questions were organized into three sections: 1) Demographics (5 questions), 2) Shunt Surveillance (12 questions), and 3) ETV Surveillance (7 questions). RESULTS A total of 122 complete responses were obtained, for an overall response rate of 88%. The majority of respondents have been in practice for more than 10 years (58%) and exclusively treat pediatric patients (79%). Most respondents consider hydrocephalus to have stabilized 1 month (21%) or 3 months (39%) after shunt surgery, and once stability is achieved, 72% then ask patients to return for routine clinical follow-up annually. Overall, 83% recommend lifelong clinical follow-up after shunt placement. Additionally, 75% obtain routine imaging studies in asymptomatic patients, although the specific imaging modality and frequency of imaging vary. The management of an asymptomatic increase in ventricle size or an asymptomatic catheter fracture also varies widely. Many respondents believe that hydrocephalus takes longer to stabilize after ETV than after shunt placement, reporting that they consider hydrocephalus to have stabilized 3 (28%), 6 (33%), or 12 (28%) months after an ETV. Although 68% of respondents have patients return annually for routine clinical follow-up after an ETV, only 56% recommend lifelong follow-up. The proportion of respondents who perform lifelong follow-up increases with greater practice experience (p = 0.01). Overall, 67% of respondents obtain routine imaging studies in asymptomatic patients after an ETV, with “rapid” MRI the study of choice for most respondents. CONCLUSIONS While there is a general consensus among pediatric neurosurgeons across North America that hydrocephalus patients should have long-term follow-up after shunt placement, radiological surveillance is characterized by considerable variety, as is follow-up after an ETV. Future work should focus on evaluating whether any one of these surveillance protocols is associated with improved outcomes.


2021 ◽  
Vol 50 (4) ◽  
pp. E11
Author(s):  
Christopher M. Bonfield ◽  
Chevis N. Shannon ◽  
Ron W. Reeder ◽  
Samuel Browd ◽  
James Drake ◽  
...  

OBJECTIVE Hydrocephalus may be seen in patients with multisuture craniosynostosis and, less commonly, single-suture craniosynostosis. The optimal treatment for hydrocephalus in this population is unknown. In this study, the authors aimed to evaluate the success rate of ventriculoperitoneal shunt (VPS) treatment and endoscopic third ventriculostomy (ETV) both with and without choroid plexus cauterization (CPC) in patients with craniosynostosis. METHODS Utilizing the Hydrocephalus Clinical Research Network (HCRN) Core Data Project (Registry), the authors identified all patients who underwent treatment for hydrocephalus associated with craniosynostosis. Descriptive statistics, demographics, and surgical outcomes were evaluated. RESULTS In total, 42 patients underwent treatment for hydrocephalus associated with craniosynostosis. The median gestational age at birth was 39.0 weeks (IQR 38.0, 40.0); 55% were female and 60% were White. The median age at first craniosynostosis surgery was 0.6 years (IQR 0.3, 1.7), and at the first permanent hydrocephalus surgery it was 1.2 years (IQR 0.5, 2.5). Thirty-three patients (79%) had multiple different sutures fused, and 9 had a single suture: 3 unicoronal (7%), 3 sagittal (7%), 2 lambdoidal (5%), and 1 unknown (2%). Syndromes were identified in 38 patients (90%), with Crouzon syndrome being the most common (n = 16, 42%). Ten patients (28%) received permanent hydrocephalus surgery before the first craniosynostosis surgery. Twenty-eight patients (67%) underwent VPS treatment, with the remaining 14 (33%) undergoing ETV with or without CPC (ETV ± CPC). Within 12 months after initial hydrocephalus intervention, 14 patients (34%) required revision (8 VPS and 6 ETV ± CPC). At the most recent follow-up, 21 patients (50%) required a revision. The revision rate decreased as age increased. The overall infection rate was 5% (VPS 7%, 0% ETV ± CPC). CONCLUSIONS This is the largest prospective study reported on children with craniosynostosis and hydrocephalus. Hydrocephalus in children with craniosynostosis most commonly occurs in syndromic patients and multisuture fusion. It is treated at varying ages; however, most patients undergo surgery for craniosynostosis prior to hydrocephalus treatment. While VPS treatment is performed more frequently, VPS and ETV are both reasonable options, with decreasing revision rates with increasing age, for the treatment of hydrocephalus associated with craniosynostosis.


2017 ◽  
Vol 6 (12) ◽  
pp. e222 ◽  
Author(s):  
Sengwee Toh ◽  
Laura J Rasmussen-Torvik ◽  
Emily E Harmata ◽  
Roy Pardee ◽  
Rosalinde Saizan ◽  
...  

2011 ◽  
Vol 38 (5) ◽  
pp. 1242-1242
Author(s):  
M. J. Walter ◽  
M. Castro ◽  
E. Israel ◽  
C. A. Sorkness ◽  

Sign in / Sign up

Export Citation Format

Share Document