Validation of a freehand technique for cortical bone trajectory screws in the lumbar spine

2019 ◽  
Vol 31 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Zachary Tan ◽  
Stewart McLachlin ◽  
Cari Whyne ◽  
Joel Finkelstein

OBJECTIVEThe cortical bone trajectory (CBT) technique for pedicle screw placement has gained popularity among spinal surgeons. It has been shown biomechanically to provide better fixation and improved pullout strength compared to a traditional pedicle screw trajectory. The CBT technique also allows for a less invasive approach for fusion and may have lower incidence of adjacent-level disease. A limitation of the current CBT technique is a lack of readily identifiable and reproducible visual landmarks to guide freehand CBT screw placement in comparison to the well-defined identifiable landmarks for traditional pedicle screw insertion. The goal of this study was to validate a safe and intuitive freehand technique for placement of CBT screws based on optimization of virtual CBT screw placement using anatomical landmarks in the lumbar spine. The authors hypothesized that virtual identification of anatomical landmarks on 3D models of the lumbar spine generated from CT scans would translate to a safe intraoperative freehand technique.METHODSCustomized, open-source medical imaging and visualization software (3D Slicer) was used in this study to develop a workflow for virtual simulation of lumbar CBT screw insertion. First, in an ex vivo study, 20 anonymous CT image series of normal and degenerative lumbar spines and virtual screw insertion were conducted to place CBT screws bilaterally in the L1–5 vertebrae for each image volume. The optimal safe CBT trajectory was created by maximizing both the screw length and the cortical bone contact with the screw. Easily identifiable anatomical surface landmarks for the start point and trajectory that best allowed the reproducible idealized screw position were determined. An in vivo validation of the determined landmarks from the ex vivo study was then performed in 10 patients. Placement of virtual “test” cortical bone trajectory screws was simulated with the surgeon blinded to the real-time image-guided navigation, and the placement was evaluated. The surgeon then placed the definitive screw using image guidance.RESULTSFrom the ex vivo study, the optimized technique and landmarks were similar in the L1–4 vertebrae, whereas the L5 optimized technique was distinct. The in vivo validation yielded ideal, safe, and unsafe screws in 62%, 16%, and 22% of cases, respectively. A common reason for the nonidealized trajectories was the obscuration of patient anatomy secondary to severe degenerative changes.CONCLUSIONSCBT screws were placed ideally or safely 78% of the time in a virtual simulation model. A 22% rate of unsafe freehand trajectories suggests that the CBT technique requires use of image-guided navigation or x-ray guidance and that reliable freehand CBT screw insertion based on anatomical landmarks is not reliably feasible in the lumbar spine.

2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


Spine ◽  
2016 ◽  
Vol 41 (14) ◽  
pp. E851-E856 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Takashi Kato ◽  
Yoshiyuki Yato ◽  
Hiroshi Sasao ◽  
Hideaki Imabayashi ◽  
...  

2013 ◽  
Vol 26 (6) ◽  
pp. E248-E253 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Osamu Nemoto ◽  
Hideaki Imabayashi ◽  
Takashi Asazuma ◽  
...  

2015 ◽  
Vol 7 (3) ◽  
pp. 213-221 ◽  
Author(s):  
Kevin Phan ◽  
Jarred Hogan ◽  
Monish Maharaj ◽  
Ralph J Mobbs

2015 ◽  
Vol 7 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Hideaki Imabayashi ◽  
Naobumi Hosogane ◽  
Takashi Asazuma ◽  
...  

2021 ◽  
Vol 11 (22) ◽  
pp. 10583
Author(s):  
Kuo-Chih Su ◽  
Kun-Hui Chen ◽  
Chien-Chou Pan ◽  
Cheng-Hung Lee

Cortical bone trajectory (CBT) is increasingly used in spinal surgery. Although there are many biomechanical studies, the biomechanical effect of CBT in combination with traditional pedicle screws is not detailed. Therefore, the purpose of this study was to investigate the effects of the traditional pedicle screw and CBT screw implantation on the lumbar spine using finite element methods. Based on the combination of the traditional pedicle screw and the CBT system implanted into the lumbar spine, four finite element spinal lumbar models were established. The models were given four different load conditions (flexion, extension, lateral bending, and axial rotation), and the deformation and stress distribution on the finite element model were observed. The results show that there was no significant difference in the structural stability of the lumbar spine model between the traditional pedicle screw system and the CBT system. In addition, CBT may reduce stress on the endplate. Different movements performed by the model may have significant biomechanical effects on the spine and screw system. Clinical spinal surgeons may also consider using the CBT system in revision spinal surgery, which may contribute to smaller wounds.


2014 ◽  
Vol 6 (3) ◽  
pp. 244-248 ◽  
Author(s):  
Koichi Iwatsuki ◽  
Toshiki Yoshimine ◽  
Yu-ichiro Ohnishi ◽  
Kosi Ninomiya ◽  
Toshika Ohkawa

2020 ◽  
Vol 49 (5) ◽  
pp. 977-988 ◽  
Author(s):  
Patricia Beer ◽  
Brian H. Park ◽  
Frank Steffen ◽  
DECVN Lucas A. Smolders ◽  
Antonio Pozzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document