scholarly journals Biomechanical Evaluation of Cortical Bone Trajectory Fixation with Traditional Pedicle Screw in the Lumbar Spine: A Finite Element Study

2021 ◽  
Vol 11 (22) ◽  
pp. 10583
Author(s):  
Kuo-Chih Su ◽  
Kun-Hui Chen ◽  
Chien-Chou Pan ◽  
Cheng-Hung Lee

Cortical bone trajectory (CBT) is increasingly used in spinal surgery. Although there are many biomechanical studies, the biomechanical effect of CBT in combination with traditional pedicle screws is not detailed. Therefore, the purpose of this study was to investigate the effects of the traditional pedicle screw and CBT screw implantation on the lumbar spine using finite element methods. Based on the combination of the traditional pedicle screw and the CBT system implanted into the lumbar spine, four finite element spinal lumbar models were established. The models were given four different load conditions (flexion, extension, lateral bending, and axial rotation), and the deformation and stress distribution on the finite element model were observed. The results show that there was no significant difference in the structural stability of the lumbar spine model between the traditional pedicle screw system and the CBT system. In addition, CBT may reduce stress on the endplate. Different movements performed by the model may have significant biomechanical effects on the spine and screw system. Clinical spinal surgeons may also consider using the CBT system in revision spinal surgery, which may contribute to smaller wounds.

2019 ◽  
Author(s):  
guofang Fang ◽  
yunzhi lin ◽  
wenggang cui ◽  
lili guo ◽  
shihao Zhang ◽  
...  

Abstract Objectives: The aim of this study was to evaluate the biomechanical stability and safety in patients undergoing oblique lumbar inter-body fusion (OLIF) surgery with stand-alone (SA) and Bilateral pedicle screw fixation (BPSF). Methods: A finite element model of L4-L5 spinal unit was established and validated. Based on the validated model technique, function surgical models corresponding to SA, BPSF were created. Simulations employing the models were performed to investigate the OLIF surgery. A bending moment of 7.5 Nm and a 500 N follower load were applied to the models in flexion, extension, axial rotation and lateral bending. Finite element(FE) models were developed to compare the biomechanics of the intact group, SA, BPSF group. Results: Compared with the Range of motion (ROM) of the intact lumbar model, SA model decreased by 79.5% in flexion, 54.2% in extension, BPSF model decreased by 86.4% in flexion, 70.8% in extension. Compared with the BPSF, the maximum stresses of L4 inferior endplate (IEP) and L5 superior endplate (SEP) increased significantly in SA model, L4 IEP increased to 49.7MPa in extension, L5 SEP increased to 47.7MPa in flexion. Conclusions: OLIF surgery with BPSF could reduce the max stresses of the endplate which may reduce cage sedimentation incidence. However, OLIF surgery with SA could not provide enough rigidity for the fusion segment in osteoporosis patients which may increase the cage sedimentation incidence. Keywords: OLIF; Pedicle screw fixation; spinal fusion; finite element


2016 ◽  
Vol 25 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Jeffrey P. Mullin ◽  
Breanna Perlmutter ◽  
Eric Schmidt ◽  
Edward Benzel ◽  
Michael P. Steinmetz

OBJECTIVE In 2009, Santoni and colleagues described a novel technique of posterior instrumentation; the cortical bone trajectory (CBT) was described as a caudocephalad and medial-to-lateral trajectory. Reported indications for CBT fixation include patients with osteoporosis, single-level degenerative disease, or adjacent-segment disease (ASD). In cases of revision surgery, it is technically possible and beneficial to place a traditional pedicle screw and a CBT screw at the same spinal level and side. It remains unclear as to the feasibility of placing both a traditional and a CBT screw at all levels of the lumbar spine and with varying trajectories of the preexisting traditional pedicle screws. Therefore, the authors conducted a study to radiographically assess the feasibility of using CBT and traditional pedicle screws at the same level in a large patient population. METHODS Using a 3D Spine Navigation WorkStation, the authors assessed 47 lumbar spine CT scans. These images were obtained from 2 disparate groups of patients: those who had previously undergone traditional pedicle instrumentation (prior surgery group) and those who had not (no prior surgery group). The authors virtually placed traditional pedicle and CBT screws at each lumbar level bilaterally. It was then determined if the dual trajectories were feasible, as defined by the presence or absence of a collision of the screw trajectories based on 3D imaging. RESULTS Overall, the authors evaluated 47 patients and were able to successfully plan dual trajectories in 50% of the pedicles. The no prior surgery group, compared with the prior surgery group, had a significantly greater success rate for dual trajectories. This difference was most significant in the lower lumbar levels (L3–5) where the prior instrumented group had success rates lower than 40% compared with the no prior surgery group's success rate, which was greater than 70%. There was a significant difference between each lumbar level in the lower spine. CONCLUSIONS There is a significant difference in the feasibility of planning CBT screws in patients who have undergone prior pedicle instrumentation compared with placing CBT and traditional pedicle screws simultaneously, but dual trajectory pedicle screws are a feasible option for posterior lumbar spinal instrumentation, especially as a de novo option in osteoporotic patients or in patients with ASD who underwent previous pedicle instrumentation. Ultimately, the practical clinical utility and biomechanical effects on the spine and instrumentation construct would require additional study.


2016 ◽  
Vol 24 (6) ◽  
pp. 910-915 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Hideaki Imabayashi ◽  
Naobumi Hosogane ◽  
Takashi Asazuma ◽  
...  

OBJECTIVE In the management of isthmic spondylolisthesis, the pedicle screw system is widely accepted surgical strategy; however, there are few reports on the biomechanical behavior of pedicle screws in spondylolytic vertebrae. The purpose of the present study was to compare fixation strength between pedicle screws inserted through the traditional trajectory (TT) and those inserted through a cortical bone trajectory (CBT) in spondylolytic vertebrae by computational simulation. METHODS Finite element models of spondylolytic and normal vertebrae were created from CT scans of 17 patients with adult isthmic spondylolisthesis (mean age 54.6 years, 10 men and 7 women). Each vertebral model was implanted with pedicle screws using TT and CBT techniques and compared between two groups. First, fixation strength of a single screw was evaluated by measuring axial pullout strength. Next, vertebral fixation strength of a paired-screw construct was examined by applying forces simulating flexion, extension, lateral bending, and axial rotation to vertebrae. RESULTS Fixation strengths of TT screws showed a nonsignificant difference between the spondylolytic and the normal vertebrae (p = 0.31–0.81). Fixation strength of CBT screws in the spondylolytic vertebrae demonstrated a statistically significant decrease in pullout strength (21.4%, p < 0.01), flexion (44.1%, p < 0.01), extension (40.9%, p < 0.01), lateral bending (38.3%, p < 0.01), and axial rotation (28.1%, p < 0.05) compared with those in the normal vertebrae. In the spondylolytic vertebrae, no statistically significant difference was observed for pullout strength between TT and CBT (p = 0.90); however, the CBT construct showed lower vertebral fixation strength in flexion (39.0%, p < 0.01), extension (35.6%, p < 0.01), lateral bending (50.7%, p < 0.01), and axial rotation (59.3%, p < 0.01) compared with the TT construct. CONCLUSIONS CBT screws are less optimal for stabilizing the spondylolytic vertebra due to their lower fixation strength compared with TT screws.


2015 ◽  
Vol 23 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Hideaki Imabayashi ◽  
Naobumi Hosogane ◽  
Takashi Asazuma ◽  
...  

OBJECT Cortical bone trajectory (CBT) maximizes thread contact with the cortical bone surface and provides increased fixation strength. Even though the superior stability of axial screw fixation has been demonstrated, little is known about the biomechanical stiffness against multidirectional loading or its characteristics within a unit construct. The purpose of the present study was to quantitatively evaluate the anchorage performance of CBT by the finite element (FE) method. METHODS Thirty FE models of L-4 vertebrae from human spines (mean age [± SD] 60.9 ± 18.7 years, 14 men and 16 women) were computationally created and pedicle screws were placed using the traditional trajectory (TT) and CBT. The TT screw was 6.5 mm in diameter and 40 mm in length, and the CBT screw was 5.5 mm in diameter and 35 mm in length. To make a valid comparison, the same shape of screw was inserted into the same pedicle in each subject. First, the fixation strength of a single pedicle screw was compared by axial pullout and multidirectional loading tests. Next, vertebral fixation strength within a construct was examined by simulating the motions of flexion, extension, lateral bending, and axial rotation. RESULTS CBT demonstrated a 26.4% greater mean pullout strength (POS; p = 0.003) than TT, and also showed a mean 27.8% stronger stiffness (p < 0.05) during cephalocaudal loading and 140.2% stronger stiffness (p < 0.001) during mediolateral loading. The CBT construct had superior resistance to flexion and extension loading and inferior resistance to lateral bending and axial rotation. The vertebral fixation strength of the construct was significantly correlated with bone mineral density of the femoral neck and the POS of a single screw. CONCLUSIONS CBT demonstrated superior fixation strength for each individual screw and sufficient stiffness in flexion and extension within a construct. The TT construct was superior to the CBT construct during lateral bending and axial rotation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253076
Author(s):  
Frédéric Cornaz ◽  
Jonas Widmer ◽  
Marie-Rosa Fasser ◽  
Jess Gerrit Snedeker ◽  
Keitaro Matsukawa ◽  
...  

The cortical bone trajectory (CBT) has been introduced with the aim of better screw hold, however, screw-rod constructs with this trajectory might provide less rigidity in lateral bending (LB) and axial rotation (AR) compared to the constructs with the traditional trajectory (TT). Therefore, the addition of a horizontal cross-connector could be beneficial in counteracting this possible inferiority. The aim of this study was to compare the primary rigidity of TT with CBT screw-rod constructs and to quantify the effect of cross-connector-augmentation in both. Spines of four human cadavers (T9 –L5) were cropped into 15 functional spine units (FSU). Eight FSUs were instrumented with TT and seven FSUs with CBT pedicle screws. The segments were tested in six loading directions in three configurations: uninstrumented, instrumented with and without cross-connector. The motion between the cranial and caudal vertebra was recorded. The range of motion (ROM) between the CBT and the TT group did not differ significantly in either configuration. Cross-connector -augmentation did reduce the ROM in AR (16.3%, 0.27°, p = 0.02), LB (2.9%, 0.07°, p = 0.03) and flexion-extension FE (2.3%, 0.04°, p = 0.02) for the TT group and in AR (20.6%, 0.31°, p = 0.01) for the CBT-group. The primary rigidity of TT and CBT single level screw-rod constructs did not show significant difference. The minimal reduction of ROM due to cross-connector-augmentation seems clinically not relevant. Based on the findings of these study there is no increased necessity to use a cross-connector in a CBT-construct.


Author(s):  
Lissette M. Ruberté ◽  
Raghu Natarajan ◽  
Gunnar B. J. Andersson

Degenerative disc disease (DDD) is a progressive pathological condition observed in 60 to 80% of the population [1]. It involves changes in both the biochemistry and morphology of the intervertebral disc and is associated with chronic low back pain, sciatica and adult scoliosis [2,3]. The most accepted theory of the effects of DDD on the kinematics of the spine is that proposed by Kirkaldy-Willis and Farfan which states that the condition initiates as a temporary dysfunction, followed by instability and then re-stabilization as the disease progresses [4]. Although there is no clear relationship between disc degeneration and the mechanical behavior of the lumbar spine, abnormal motion patterns either in the form of increased motion or erratic motion have been reported from studies on human cadaveric motion segments [5,6]. To date however no study has looked at how disc degeneration affects the adjacent segment mechanics. IN vivo testing is difficult for these purposes given that specimens are generally obtained from people at the later stages of life and consequently often display multiple pathologies. A finite element model is a viable alternative to study the mechanics of the segments adjacent to the diseased disc. It is hypothesized that moderate degeneration at one level will alter the kinematics of the whole lumbar spine.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


2020 ◽  
Vol 43 (12) ◽  
pp. 803-810 ◽  
Author(s):  
Masud Rana ◽  
Sandipan Roy ◽  
Palash Biswas ◽  
Shishir Kumar Biswas ◽  
Jayanta Kumar Biswas

The aim of this study is to design a novel expanding flexible rod device, for pedicle screw fixation to provide dynamic stability, based on strength and flexibility. Three-dimensional finite-element models of lumbar spine (L1-S) with flexible rod device on L3-L4-L5 levels are developed. The implant material is taken to be Ti-6Al-4V. The models are simulated under different boundary conditions, and the results are compared with intact model. In natural model, total range of motion under 10 Nm moment were found 66.7°, 24.3° and 13.59°, respectively during flexion–extension, lateral bending and axial rotation. The von Mises stress at intact bone was 4 ± 2 MPa and at bone, adjacent to the screw in the implanted bone, was 6 ± 3 MPa. The von Mises stress of disc of intact bone varied from 0.36 to 2.13 MPa while that of the disc between the fixed vertebra of the fixation model reduced by approximately 10% for flexion and 25% for extension compared to intact model. The von Mises stresses of pedicle screw were 120, 135, 110 and 90 MPa during flexion, extension, lateral bending, and axial rotation, respectively. All the stress values were within the safe limit of the material. Using the flexible rod device, flexibility was significantly increased in flexion/extension but not in axial rotation and lateral bending. The results suggest that dynamic stabilization system with respect to fusion is more effective for homogenizing the range of motion of the spine.


2018 ◽  
Vol 21 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Jonathan N. Sellin ◽  
Jeffrey S. Raskin ◽  
Kristen A. Staggers ◽  
Alison Brayton ◽  
Valentina Briceño ◽  
...  

Thoracic and lumbar cortical bone trajectory pedicle screws have been described in adult spine surgery. They have likewise been described in pediatric CT-based morphometric studies; however, clinical experience in the pediatric age group is limited. The authors here describe the use of cortical bone trajectory pedicle screws in posterior instrumented spinal fusions from the upper thoracic to the lumbar spine in 12 children. This dedicated study represents the initial use of cortical screws in pediatric spine surgery.The authors retrospectively reviewed the demographics and procedural data of patients who had undergone posterior instrumented fusion using thoracic, lumbar, and sacral cortical screws in children for the following indications: spondylolysis and/or spondylolisthesis (5 patients), unstable thoracolumbar spine trauma (3 patients), scoliosis (2 patients), and tumor (2 patients).Twelve pediatric patients, ranging in age from 11 to 18 years (mean 15.4 years), underwent posterior instrumented fusion. Seventy-six cortical bone trajectory pedicle screws were placed. There were 33 thoracic screws and 43 lumbar screws. Patients underwent surgery between April 29, 2015, and February 1, 2016. Seven (70%) of 10 patients with available imaging achieved a solid fusion, as assessed by CT. Mean follow-up time was 16.8 months (range 13–22 months). There were no intraoperative complications directly related to the cortical bone trajectory screws. One patient required hardware revision for caudal instrumentation failure and screw-head fracture at 3 months after surgery.Mean surgical time was 277 minutes (range 120–542 minutes). Nine of the 12 patients received either a 12- or 24-mg dose of recombinant human bone morphogenic protein 2. Average estimated blood loss was 283 ml (range 25–1100 ml).In our preliminary experience, the cortical bone trajectory pedicle screw technique seems to be a reasonable alternative to the traditional trajectory pedicle screw placement in children. Cortical screws seem to offer satisfactory clinical and radiographic outcomes, with a low complication profile.


2020 ◽  
Author(s):  
Jonathon Lentz ◽  
Joseph Albano ◽  
Robert Stockton ◽  
Maximillian Ganz ◽  
Larry Lutsky ◽  
...  

Abstract Background Safely performing instrumented spinal fusion requires an intimate knowledge of anatomy and variations. Pedicle screw position and size have implications on intraoperative and post-operative complications. While pre-operative planning with Computed Tomography (CT) scan measurements may be the safest way to judge trajectory and maximal screw size, it is not standard practice for many spine surgeons. We investigated how height and weight correlated with PD. We hypothesized that these routinely obtained, non-invasive measurements would provide an easily referenced data point to aid in perioperative estimation of maximum safe pedicle screw diameter (MSPSD).Methods Coronal cuts of the lumbar spine were assessed to obtain transverse outer cortical PD as measured through the isthmus at lumbar vertebrae one through five. We assessed whether height, weight, and BMI significantly correlated with PD in our diverse population. Results Height and weight were found to significantly correlate with PD. Height explained roughly 10% of the variance in PD, weight explained only 3-4%, and BMI nearly 0%. There were significant differences in this theoretical safety profiles between the “Taller Height” and “Shorter Height” groups for the majority of pedicle screw sizes at L1 through L3. Significant differences between the populations at L4 and L5 were only seen for 8.0 mm screws at the L4 level. At L5, 100% of the “Taller Height” and “Shorter Height” subjects’ pedicles could safely accommodate pedicle screws up to 8.0 mm in diameter.Conclusions We previously reported on the significant difference in PD between different races. The results of this study provide yet another variable to be considered when making radiographic assessments of pedicle diameter.


Sign in / Sign up

Export Citation Format

Share Document