Glial cell line–derived neurotrophic factor–supplemented hibernation of fetal ventral mesencephalic neurons for transplantation in Parkinson disease: long-term storage
Object Investigation of fetal dopaminergic tissue transplantation is being conducted in animal models and clinical trials as a potential treatment for advanced Parkinson disease (PD). Because the availability of fetal tissue is limited, however, the duration of its storage prior to transplantation is a key practical issue. Longer storage times may enable fetal tissue obtained over several days to be pooled together for transplantation in a recipient. Glial cell line–derived neurotrophic factor (GDNF) has been shown to improve survival of stored human dopaminergic tissue prior to transplantation. The objective of this study was to evaluate GDNF-supplemented hibernation of fetal dopaminergic tissue for extended periods of 6 to 15 days. Methods A total of 27 rat ventral mesencephalons (VMs) were obtained in gestation Day 14 rat fetuses, and three were cultured immediately (fresh-culture control group). The remaining 24 VMs were divided sagittally along the mid-line to form 48 equal pieces of hemimesencephalons. Twenty-four pieces were stored with GDNF-supplemented hibernation medium for 6, 9, 12, or 15 days, and the 24 “partner” hemimesencephalons were stored in control hibernation medium for the same periods of time. Tissue was cultured for 48 hours and processed for tyrosine hydroxylase (TH) immunoreactivity and cresyl violet. Cell counts for all cultures and percentage of TH-immunoreactive cells were obtained. The percentage of TH-positive cells for the fresh control group was 6.3 ± 0.5%; that measured in cultures derived from tissue hibernated in GDNF-supplemented medium was significantly increased at 6 and 9 days posthiber-nation compared with the fresh-culture control group and the partner groups stored in hibernation medium only. No significant increase in percentage of TH-immunoreactive cells was observed in the 12- and 15-day hibernation groups. Conclusions In summary the authors found that fetal dopaminergic tissue can safely be stored up to 9 days in GDNF-supplemented hibernation medium. Furthermore the percentage of TH-immunoreactive cells is significantly increased after 6 and 9 days of storage in this medium, improving the yield of TH-positive cells prior to transplantation. These observations may have important clinical implications for collecting fetal dopaminergic cells and improving their survival after transplantation.