Effect of vasodilators and myelotomy on recovery after acute spinal cord injury in rats

1979 ◽  
Vol 50 (3) ◽  
pp. 349-352 ◽  
Author(s):  
Alex S. Rivlin ◽  
Charles H. Tator

✓ The effect of papaverine, nitroprusside, or myelotomy on the recovery of spinal cord function was studied in rats after acute cord-compression injury. Spinal cord recovery was measured by a quantitative method of clinical assessment previously developed in our laboratory. Neither papaverine nor nitroprusside improved recovery of cord function. Dorsal midline myelotomy extending anteriorly as far as the central canal did not produce significant improvement (p > 0.05). However, when the myelotomy extended completely through the cord in the anteroposterior plane significant improvement (p < 0.01) was obtained.

2005 ◽  
Vol 3 (4) ◽  
pp. 302-307 ◽  
Author(s):  
Christopher B. Shields ◽  
Y. Ping Zhang ◽  
Lisa B. E. Shields ◽  
Yingchun Han ◽  
Darlene A. Burke ◽  
...  

Object. There are no clinically based guidelines to direct the spine surgeon as to the proper timing to undertake decompression after spinal cord injury (SCI) in patients with concomitant stenosis-induced cord compression. The following three factors affect the prognosis: 1) severity of SCI; 2) degree of extrinsic spinal cord compression; and 3) duration of spinal cord compression. Methods. To elucidate further the relationship between varying degrees of spinal stenosis and a mild contusion-induced SCI (6.25 g-cm), a rat SCI/stenosis model was developed in which 1.13- and 1.24-mm-thick spacers were placed at T-10 to create 38 and 43% spinal stenosis, respectively. Spinal cord damage was observed after the stenosis—SCI that was directly proportional to the duration of spinal cord compression. The therapeutic window prior to decompression was 6 and 12 hours in the 43 and 38% stenosis—SCI lesions, respectively, to maintain locomotor activity. A significant difference in total lesion volume was observed between the 2-hour and the delayed time(s) to decompression (38% stenosis—SCI, 12 and 24 hours, p < 0.05; 43% stenosis—SCI, 24 hours, p < 0.05) indicating a more favorable neurological outcome when earlier decompression is undertaken. This finding was further supported by the animal's ability to support weight when decompression was performed by 6 or 12 hours compared with 24 hours after SCI. Conclusions. Analysis of the findings in this study suggests that early decompression in the rat improves locomotor function. Prolongation of the time to decompression may result in irreversible damage that prevents locomotor recovery.


1990 ◽  
Vol 72 (6) ◽  
pp. 894-900 ◽  
Author(s):  
Thomas J. Zwimpfer ◽  
Mark Bernstein

✓ The hallmark of concussion injuries of the nervous system is the rapid and complete resolution of neurological deficits. Cerebral concussion has been well studied, both clinically and experimentally. In comparison, spinal cord concussion (SCC) is poorly understood. The clinical and radiological features of 19 SCC injuries in the general population are presented. Spinal cord injuries were classified as concussions if they met three criteria: 1) spinal trauma immediately preceded the onset of neurological deficits; 2) neurological deficits were consistent with spinal cord involvement at the level of injury; and 3) complete neurological recovery occurred within 72 hours after injury. Most cases involved young males, injured during athletics or due to falls. Concussion occurred at the two most unstable spinal regions, 16 involving the cervical spinal and three the thoracolumbar junction. Fifteen cases presented with combined sensorimotor deficits, while four exhibited only sensory disturbances. Many patients showed signs of recovery with the first few hours after injury and most had completely recovered within 24 hours. Only one case involved an unstable spinal injury. There was no evidence of ligamentous instability, spinal stenosis, or canal encroachment in the remaining 18 cases. Two patients, both children, suffered recurrent SCC injuries. No delayed deterioration or permanent cord injuries occurred. Spinal abnormalities that would predispose the spinal cord to a compressive injury were present in only one of the 19 cases. This suggests that, as opposed to direct cord compression, SCC may be the result of an indirect cord injury. Possible mechanisms are discussed.


1989 ◽  
Vol 70 (5) ◽  
pp. 688-690 ◽  
Author(s):  
I. R. Sanderson ◽  
Jon Pritchard ◽  
Henry T. Marsh

✓ During a 12-month trial period, all children attending the Hospitals for Sick Children, London, England, for management of spinal cord compression due to disseminated neuroblastoma were given chemotherapy as initial treatment rather than radiotherapy or laminectomy. Response to treatment was evaluated by a neurosurgeon as well as by oncologists. Four children were treated in this way and all made a full recovery of spinal cord function.


1989 ◽  
Vol 71 (3) ◽  
pp. 403-416 ◽  
Author(s):  
Michael G. Fehlings ◽  
Charles H. Tator ◽  
R. Dean Linden

✓ There is evidence that posttraumatic ischemia is important in the pathogenesis of acute spinal cord injury (SCI). In the present study spinal cord blood flow (SCBF), measured by the hydrogen clearance technique, and motor and somatosensory evoked potentials (MEP and SSEP) were recorded to evaluate whether the administration of nimodipine and dextran 40, alone or in combination, could increase posttraumatic SCBF and improve axonal function in the cord after acute SCI. Thirty rats received a 53-gm clip compression injury on the cord at T-1 and were then randomly and blindly allocated to one of six treatment groups (five rats in each). Each group was given an intravenous infusion of one of the following over 1 hour, commencing 1 hour after SCI: placebo and saline; placebo and dextran 40; nimodipine 0.02 mg/kg and saline; nimodipine 0.02 mg/kg and dextran 40; nimodipine 0.05 mg/kg and saline; and nimodipine 0.05 mg/kg and dextran 40. The preinjury physiological parameters, including the SCBF at T-1 (mean ± standard error of the mean: 56.84 ± 4.51 ml/100 gm/min), were not significantly different (p > 0.05) among the treatment groups. Following SCI, there was a significant decrease in the SCBF at T-1 (24.55 ± 2.99 ml/100 gm/min; p < 0.0001) as well as significant changes in the MEP recorded from the spinal cord (MEP-C) (p < 0.0001), the MEP recorded from the sciatic nerve (MEP-N) (p < 0.0001), and the SSEP (p < 0.002). Only the combination of nimodipine 0.02 mg/kg and dextran 40 increased the SCBF at T-1 (43.69 ± 6.09 ml/100 gm/min; p < 0.003) and improved the MEP-C (p < 0.0001), MEP-N (p < 0.04), and SSEP (p < 0.002) following SCI. With this combination, the changes in SCBF were significantly related to improvement in axonal function in the motor tracts (p < 0.0001) and somatosensory tracts (p < 0.0001) of the cord. This study provides quantitative evidence that an increase in posttraumatic SCBF can significantly improve the function of injured spinal cord axons, and strongly implicates posttraumatic ischemia in the pathogenesis of acute SCI.


2000 ◽  
Vol 93 (2) ◽  
pp. 276-282 ◽  
Author(s):  
Khalaf Al Moutaery ◽  
Saleh Al Deeb ◽  
Nabil Biary ◽  
Christudas Morais ◽  
Haseeb Ahmad Khan ◽  
...  

Object. This investigation was undertaken to study the effect of aluminum on neurobehavioral, electrophysiological, structural, and biochemical changes in rats following spinal cord injury (SCI). Methods. Adult male Sprague—Dawley rats classified into different groups were given aluminum sulfate—dosed drinking water in the concentrations of 0%, 0.25%, 0.5% and 1%, respectively. After 30 days of aluminum treatment, the animals were subjected to spinal cord trauma. Laminectomy was performed at T7–8 in anesthetized rats, followed by placement of a compression plate (2.2 × 5 mm) loaded with a 35-g weight over the exposed spinal cord for 5 minutes. Control animals underwent the same surgical procedure, but the compression injury was not induced (sham). Postoperative neurological function was assessed using the inclined-plane test and by obtaining a modified Tarlov score and vocal/sensory score daily for 10 days. Electrophysiological changes were assessed using corticomotor evoked potentials, whereas pathological changes were assessed by light microscopy. The level of vitamin E in the spinal cord was measured as an index of antioxidant defense. The behavioral, biochemical, and histological analyses were performed in a blinded fashion. Conclusions. Analysis of results obtained in the behavioral studies revealed that the compression of spinal cord produced transient paraparesis in which a maximum motor deficit occurred at Day 1 following SCI and resolved over a period of 10 days. Administration of aluminum significantly impaired the recovery following SCI. Analysis of the results of the biochemical, electrophysiological, and histopathological studies also confirmed the deleterious effects of aluminum on recovery from SCI in rats.


1980 ◽  
Vol 53 (3) ◽  
pp. 381-384 ◽  
Author(s):  
Charles H. Tator ◽  
Richard H. C. van der Jagt

✓ The effect of triiodothyronine (T3) or thyroxine (T4) on functional recovery after acute spinal cord compression injury in the rat was assessed. Rats treated with T3 for 14 consecutive days after injury showed significantly improved recovery at 12 and 16 weeks, and rats treated with T4 for 4 days after injury showed significantly improved recovery at 12 weeks as compared with control animals. The possible modes of action of these two hormones on the injured spinal cord are briefly discussed.


2000 ◽  
Vol 93 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Izumi Koyanagi ◽  
Yoshinobu Iwasaki ◽  
Kazutoshi Hida ◽  
Minoru Akino ◽  
Hiroyuki Imamura ◽  
...  

Object. It is known that the spinal cord can sustain traumatic injury without associated injury of the spinal column in some conditions, such as a flexible spinal column or preexisting narrowed spinal canal. The purpose of this study was to characterize the clinical features and to understand the mechanisms in cases of acute cervical cord injury in which fracture or dislocation of the cervical spine has not occurred. Methods. Eighty-nine patients who sustained an acute cervical cord injury were treated in our hospitals between 1990 and 1998. In 42 patients (47%) no bone injuries of the cervical spine were demonstrated, and this group was retrospectively analyzed. There were 35 men and seven women, aged 19 to 81 years (mean 58.9 years). The initial neurological examination indicated complete injury in five patients, whereas incomplete injury was demonstrated in 37. In the majority of the patients (90%) the authors found degenerative changes of the cervical spine such as spondylosis (22 cases) or ossification of the posterior longitudinal ligament (16 cases). The mean sagittal diameter of the cervical spinal canal, as measured on computerized tomography scans, was significantly narrower than that obtained in the control patients. Magnetic resonance (MR) imaging revealed spinal cord compression in 93% and paravertebral soft-tissue injuries in 58% of the patients. Conclusions. Degenerative changes of the cervical spine and developmental narrowing of the spinal canal are important preexisting factors. In the acute stage MR imaging is useful to understand the level and mechanisms of spinal cord injury. The fact that a significant number of the patients were found to have spinal cord compression despite the absence of bone injuries of the spinal column indicates that future investigations into surgical treatment of this type of injury are necessary.


1976 ◽  
Vol 45 (6) ◽  
pp. 638-646 ◽  
Author(s):  
Alan N. Sandler ◽  
Charles H. Tator

✓ The effect of spinal cord trauma on the vasculature and blood flow of the spinal cord is reviewed. Both quantitative and nonquantitative studies are critically discussed and reasons sought for some of the major controversies that have arisen. Differences in methodology, species variation, and variation in the degree and type of cord injury may all be important factors in producing the conflicting results reported in the literature. In general, it can be said that trauma has a profound effect on the vasculature and blood flow in the cord and that severe compression injury of the cord causes marked ischemia in the gray and white matter.


1985 ◽  
Vol 62 (5) ◽  
pp. 743-749 ◽  
Author(s):  
Masaki Kurihara

✓ A spinal cord injury was produced in Wistar rats by extradural compression of the cord with a Sugita aneurysm clip for 5 seconds. During a 2-week observation period following the injury, the tissue norepinephrine (NE), dopamine (DA), and serotonin (5-HT) concentrations decreased uniformly at and below the injured site. The chemical denervation of NE or 5-HT neurons produced by the intraspinal injection of 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT) 2 weeks before the injury did not cause a marked difference in the extent of hemorrhagic necrosis of the spinal cord after trauma as compared to control animals without pretreatment. In the rats pretreated with 6-OHDA, NE was decreased to less than 30% of control (non-pretreated) values, and, beginning at 5 days after injury, motor performance (assessed quantitatively with the inclined-plane method) was significantly improved compared to results in the non-pretreated control rats. The rats pretreated with 5,7-DHT showed no change from control animals. Spinal cord samples from non-pretreated control animals obtained at the injury site 30 minutes after the compression injury showed a marked decrease in the activity of synaptosomal Na+-K+-ATPase (adenosine triphosphatase) of about 50%, and an increase in both thiobarbituric acid reaction substance (about 170%) and cyclic guanine monophosphate (about 150%). The NE-denervated rats showed no significant changes in these three parameters. The results indicated that NE released after crush injury may impair the neuronal cell membrane around the lesion site by induction of lipid peroxidation. The possible mechanisms by which released NE may alter membrane function are discussed.


1976 ◽  
Vol 45 (6) ◽  
pp. 683-691 ◽  
Author(s):  
Shokei Yamada ◽  
Phanor L. Perot ◽  
Thomas B. Ducker ◽  
Isabel Lockard

✓ A new myelotomy knife is described and a procedure, designed to sever certain reflex connections while preserving as many corticospinal connections as possible, is presented. Through intermittent dorsal midline incisions the gray matter lateral to the central canal is severed bilaterally under the microscope from L-1 to S-1. This procedure relieved mass spasms and hyperactive reflexes in 14 paraplegic or tetraplegic patients, but preserved postural reflexes and whatever voluntary motor power the patients had prior to myelotomy. Before myelotomy all patients were bedridden. Afterward nine patients were able to use a wheel chair and five were able to walk with the use of parallel bars or crutches.


Sign in / Sign up

Export Citation Format

Share Document