The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema

1983 ◽  
Vol 59 (5) ◽  
pp. 803-809 ◽  
Author(s):  
Quentin J. Durward ◽  
Rolando F. Del Maestro ◽  
A. Loren Amacher ◽  
J. Keith Farrar

✓ The influence of intracranial pressure (ICP), systemic arterial pressure (SAP), and cerebral perfusion pressure (CPP) upon the development of vasogenic cerebral edema is largely unknown. To study their relationship, the authors have produced an osmotic disruption of the blood-brain barrier unilaterally in rabbits by injecting 1 cc/kg of 2M NaCl into the left internal carotid artery. The amount of vasogenic edema produced was assessed by quantitation of the extravasation of Evans blue dye into the area of maximum blood-brain barrier breakdown by means of optical densitometry following formamide extraction. The ICP was measured using a cisterna magna catheter into which mock cerebrospinal fluid could be infused at a predetermined pressure. The SAP was controlled by exsanguination from a femoral artery catheter. In 18 animals in which blood pressure was not controlled, no significant relationship between the ICP and the degree of Evans blue dye extravasation was noted. In these animals, however, a direct relationship between CPP (defined as mean arterial pressure minus mean ICP) and extravasation of Evans blue dye was found (correlation coefficient 0.630; p < 0.001). When ICP was held constant at 0 to 5 mm Hg in another group of 16 animals and different levels of blood pressure were produced by exsanguination, a significant direct relationship between extravasation of Evans blue dye and the SAP was found (correlation coefficient 0.786; p < 0.001). In a third group of 20 animals, the blood pressure was held constant at 90 to 100 mm Hg and the ICP was varied between 0 and 75 mm Hg. There was a highly significant result indicating increasing Evans blue dye extravasation with lower levels of ICP (p < 0.001). Cerebral blood flow determinations by the hydrogen clearance method indicated loss of autoregulation in all animals in the areas of brain injured by intracarotid hypertonic saline. These results indicate that high SAP and low ICP (that is, a large CPP) promote Evans blue dye extravasation in this model of blood-brain barrier disruption. This finding has implications for the management of patients with vasogenic edema.

1999 ◽  
Vol 91 (6) ◽  
pp. 1013-1019 ◽  
Author(s):  
E-Jian Lee ◽  
Yu-Chang Hung ◽  
Ming-Yang Lee

Object. The authors sought to ascertain the nature of the hemodynamic and metabolic derangement underlying acute pathophysiological events that occur after intracerebral hemorrhage (ICH).Methods. Cerebral perfusion pressure (CPP), flow velocity (FV) of the middle cerebral artery, and the arteriovenous contents of oxygen and lactate were investigated in 24 dogs subjected to sham operations (Group A, four animals) or intracerebral injections of 3 ml (Group B, 11 animals) or 5 ml (Group C, nine animals) autologous arterial blood. Twelve additional dogs received intravenous injections of 2% Evans blue or trypan blue dye to evaluate blood-brain barrier (BBB) changes. Within 1 hour, animals with ICH exhibited a rise in FV associated with significant reductions (p < 0.05) in CPP and the arteriovenous content difference (AVDO2). In Group C animals significant increases in lactate concentration were found in arterial and superior sagittal sinus (SSS) samples compared with those in the other two groups (p < 0.05). Additionally, perihematomal dye extravasation was observed in animals subjected to ICH and trypan blue dye injections, with profound and mild leakages in Group C and Group B animals, respectively, but not in Group A and Evans blue dye—injected animals. During the subsequent 4 hours, the FV and AVDO2 returned to normal in Group B animals, indicating a balanced cerebral metabolic rate for oxygen (CMRO2) compared with a deranged CMRO2 in Group C animals due to their lowered FV and AVDO2. However, no coupling increase in brain lactate clearance in Group C animals accounted for either the early lactate elevation in SSS or the decrease in CMRO2.Conclusions. Profound reductions in CPP and brain oxygenation after ICH may rapidly exhaust hemodynamic compensation and, thus, impede cerebral homeostasis; however, these reductions only modestly enhance anaerobic glycolysis. Furthermore, the data suggest that a selective increase in permeability, rather than anatomical disruption, of the BBB is involved in the acute pathophysiological events that occur after ICH, which may provide a possible gateway for systemic arterial lactate entering the SSS.


2006 ◽  
Vol 34 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Q-H Ke ◽  
T-B Liang ◽  
J Yu ◽  
S-S Zheng

The development of central pontine myelinolysis was studied in rats. Severe hyponatraemia was induced using vasopressin tannate and 2.5% dextrose in water and then rapidly corrected with hypertonic saline alone, hypertonic saline and dexamethasone simultaneously, or hypertonic saline plus dexamethasone 24 h later. The permeability of the blood-brain barrier was evaluated using the extravasation of Evans blue dye and the expression of inducible nitric oxide synthase (iNOS) in the brain was examined using Western blot analysis. Histological sections were examined for demyelinating lesions. In rats receiving hypertonic saline alone, Evans blue dye content and expression of iNOS began to increase 6 and 3 h, respectively, after rapid correction of hyponatraemia and demyelinating lesions were seen. When dexamethasone was given simultaneously with hypertonic saline, these increases were inhibited and demyelinating lesions were absent. These effects were lost if dexamethasone injection was delayed. Disruption of the blood-brain barrier and increased iNOS expression may be involved in the pathogenesis of central pontine myelinolysis, and early treatment with dexamethasone may help prevent the development of central pontine myelinolysis.


1986 ◽  
Vol 64 (4) ◽  
pp. 643-649 ◽  
Author(s):  
Shizuo Hatashita ◽  
Julian T. Hoff ◽  
Shozo Ishii

✓ Acute arterial hypertension was studied in normal cats to determine its role in the formation of brain edema. Arterial hypertension was induced for 30 minutes by inflation of a balloon catheter situated in the descending aorta. Cerebral edema was evaluated by gross and microscopic observations, tissue water content by wet/dry weights, and blood-brain barrier (BBB) permeability by extravasation of horseradish peroxidase (HRP) and Evans blue dye. For 1 hour after the hypertensive insult, tissue pressure and regional cerebral blood flow (rCBF) were measured from the arterial boundary zone and from a non-boundary region, and intracranial pressure was recorded from the lateral ventricle as ventricular fluid pressure. Focal lesions with increased BBB permeability to Evans blue dye or HRP were usually located symmetrically in the cortex, corresponding to the occipitoparietal parts of the arterial boundary zones. The increase in water content was found only in areas of increased permeability. Tissue pressure increased simultaneously with the abrupt rise in blood pressure, and an increase in rCBF paralleled the elevation of blood pressure. Tissue pressure and rCBF returned to a steady state when blood pressure returned to normal. There were no differences in tissue pressure or rCBF between the arterial boundary zone and the non-boundary zone, even during arterial hypertension. In cerebral hemispheres examined 48 hours after the hypertensive challenge, brain edema had not continued to develop. The data indicate that acute arterial hypertension may produce focal brain edema with increased permeability of the BBB in the cortex of normal brain, particularly in the arterial boundary zones. The authors postulate that increased cerebral blood volume, high intraluminal pressure, and breakthrough of autoregulation play an important role in the formation of hypertensive brain edema.


1984 ◽  
Vol 61 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Klaus Maier-Hauff ◽  
Alexander J. Baethmann ◽  
Manfred Lange ◽  
Ludwig Schürer ◽  
Andreas Unterberg

✓ Vasogenic edema was induced in mongrel cats by cold injury to study uptake and activation of the plasma-kallikrein-kinin system in central nervous system (CNS) tissue. A method was developed for quantitative assessment of kinin formation in affected brain tissue areas. Gross disruption of the blood-brain barrier by focal trauma causes marked penetration of plasma kininogens into necrotic and edematous brain tissue. Moreover, the kallikrein-kinin (KK) system was activated in both necrotic and perifocal edematous areas, and was markedly enhanced by additional cerebral ischemia. Formation of kinins in necrotic brain tissue led to consumption of approximately 60% to 80% of the amount of kininogens being taken up. In perifocal edematous tissue, formation of kinins was less pronounced, or even absent. However, if cerebral ischemia evolved after severe intracranial hypertension, kinins were also formed in the perifocal edematous brain. The intravascular origin of kininogens found in pathological tissue areas secondary to injury was deduced from the observation that cerebral tissue of the contralateral hemisphere with an intact blood-brain barrier had no measurable quantities of kininogens. Consumption of plasma kininogens or formation of kinins were assessed as the difference of the total amount of plasma kininogens taken up into the tissue minus the amount of kininogens found in the brain at postmortem examination. The data indicate that uptake and activation of the plasma-KK system might occur under all pathological conditions in which blood-brain barrier damage permits cerebral penetration of plasma proteins, such as with cerebral contusion, focal ischemia, and tumors. The potent pathophysiological mechanisms induced by kinins in CNS tissue, such as formation of brain edema, microcirculatory dysfunction, and enhancement of blood-brain barrier permeability, together with their formation in focal and perifocal pathological brain tissue, provide further support for a mediator function of the KK system. Methods that specifically interfere with the formation of kinins in damaged brain should therefore be expected to attenuate vasogenic edema.


1986 ◽  
Vol 65 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Howard R. Reichman ◽  
Catherine L. Farrell ◽  
Rolando F. Del Maestro

✓ Cerebral edema produced by brain tumors is clinically and experimentally reduced by steroid therapy. Nonsteroid anti-inflammatory drugs (NSAID's) which have been used to treat non-neural inflammation and swelling have not been evaluated for their ability to affect edema produced by brain tumors. The authors have used the rat C6 glioma spheroid implantation model to compare the effects of two steroids (dexamethasone and methylprednisolone) and two NSAID's (ibuprofen and indomethacin) on protein extravasation caused by intracranial gliomas. Evans blue dye was used as a marker for serum albumin extravasation. The concentration of Evans blue dye was measured in the tumor and peritumoral and contralateral brain tissue 1 hour after intravenous injection. Extravasation of Evans blue dye within the tumor was decreased in all treatment groups when compared to placebo-injected control animals. The differences between the control specimens and those treated with dexamethasone, methylprednisolone, and indomethacin were highly significant (p < 0.005). The Evans blue staining was also decreased in the peritumoral and contralateral brain. These results indicate that NSAID's compare favorably with steroids in diminishing tumor-induced protein extravasation. It is suggested that NSAID's may prove to be beneficial in clinical instances used either in conjunction with steroid therapy or alone when steroids are contraindicated.


2000 ◽  
Vol 92 (3) ◽  
pp. 448-452 ◽  
Author(s):  
Mustafa K. Başkaya ◽  
Aclan Doğan ◽  
A. Muralikrishna Rao ◽  
Robert J. Dempsey

Object. Cytidine 5′-diphosphocholine (CDPC), or citicoline, is a naturally occurring endogenous compound that has been reported to provide neuroprotective effects after experimental cerebral ischemia. However, in no study has such protection been shown after traumatic brain injury (TBI). In this study the authors examined the effect of CDPC on secondary injury factors, brain edema and blood-brain barrier (BBB) breakdown, after TBI.Methods. After anesthesia had been induced in Sprague—Dawley rats by using 1.5% halothane, an experimental TBI was created using a controlled cortical impact (CCI) device with a velocity of 3 m/second, resulting in a 2-mm deformation. Four sham-operated control animals used for brain edema and BBB breakdown studies underwent the same surgical procedure, but received no injury. Brain edema was evaluated using the wet—dry method 24 hours postinjury, and BBB breakdown was evaluated by measuring Evans blue dye (EBD) extravasation with fluorescein 6 hours after TBI. The animals received intraperitoneal injections of CDPC (50, 100, or 400 mg/kg two times after TBI [eight–10 animals in each group]) or saline (eight animals) after TBI. Traumatic brain injury induced an increase in the percentage of water content and in EBD extravasation in the injured cortex and the ipsilateral hippocampus. No significant benefit from CDPC treatment was observed at a dose of 50 mg/kg. Cytidine 5′-diphosphocholine at a dose of 100 mg/kg attenuated EBD extravasation in both regions, although it reduced brain edema only in the injured cortex. In both regions, 400 mg/kg of CDPC significantly decreased brain edema and BBB breakdown.Conclusions. This is the first report in which dose-dependent neuroprotective effects of CDPC have been demonstrated in the injured cortex as well as in the hippocampus, a brain region known to be vulnerable to injury, after experimental TBI. The results of this study suggest that CDPC is an effective neuroprotective agent on secondary injuries that appear following TBI.


Sign in / Sign up

Export Citation Format

Share Document