Intravenous insulin-like growth factor-I (IGF-I) in moderate-to-severe head injury: a Phase II safety and efficacy trial

1997 ◽  
Vol 86 (5) ◽  
pp. 779-786 ◽  
Author(s):  
Jimmi Hatton ◽  
Robert P. Rapp ◽  
Kenneth A. Kudsk ◽  
Rex O. Brown ◽  
Mark S. Luer ◽  
...  

✓ The purpose of this study was to determine the effect of insulin-like growth factor-I (IGF-I) on the catabolic state and clinical outcome of head-injured patients. Thirty-three patients between the ages of 18 and 59 years with isolated traumatic head injury and Glasgow Coma Scale (GCS) scores of 4 to 10 were randomized to one of two groups. All patients received standard neurosurgical intensive care plus aggressive nutritional support; the patients in the treatment group also received intravenous therapy with continuous IGF-I (0.01 mg/kg/hour). During the 14-day dosing period, the control patients lost weight, whereas treated patients gained weight despite a significantly higher measured energy expenditure and lower caloric intake (p = 0.02). Daily glucose concentrations and nitrogen outputs were greater in control patients (p = 0.03) throughout the study period. During Week 1, only treated patients achieved positive nitrogen balance. Fifteen of 17 treated and 13 of 16 control patients survived the 1st week. No deaths occurred in patients whose serum IGF-I concentrations were higher than 350 ng/ml. Dichotomized Glasgow Outcome Scale scores for patients with baseline GCS scores of 5 to 7 improved from poor to good for eight of 12 treated patients but for only three of 11 control patients (p = 0.06). Eight of 11 treated patients with serum IGF-I concentrations that were at least 350 ng/ml achieved moderate-to-good outcome scores at 6 months, compared to only one of five patients with lower concentrations (p < 0.05). These findings indicate that pharmacological concentrations of IGF-I may improve clinical outcome and nitrogen utilization in patients with moderate-to-severe head injury.

1997 ◽  
Vol 2 (5) ◽  
pp. E9 ◽  
Author(s):  
Jimmi Hatton ◽  
Robert P. Rapp ◽  
Kenneth A. Kudsk ◽  
Rex O. Brown ◽  
Mark S. Luer ◽  
...  

The purpose of this study was to determine the effect of insulin-like growth factor-I (IGF-I) on the catabolic state and clinical outcome of head-injured patients. Thirty-three patients between the ages of 18 and 59 years with isolated traumatic head injury and Glasgow Coma Scale (GCS) scores of 4 to 10 were randomized to one of two groups. All patients received standard neurosurgical intensive care plus aggressive nutritional support; the patients in the treatment group also received intravenous therapy with continuous IGF-I (0.01 mg/kg/hour). During the 14-day dosing period, the control patients lost weight, whereas treated patients gained weight despite a significantly higher measured energy expenditure and lower caloric intake (p = 0.02). Daily glucose concentrations and nitrogen outputs were greater in control patients (p = 0.03) throughout the study period. During Week 1, only treated patients achieved positive nitrogen balance. Fifteen of 17 treated and 13 of 16 control patients survived the 1st week. No deaths occurred in patients whose serum IGF-I concentrations were higher than 350 ng/ml. Dichotomized Glasgow Outcome Scale scores for patients with baseline GCS scores of 5 to 7 improved from poor to good for eight of 12 treated patients but for only three of 11 control patients (p = 0.06). Eight of 11 treated patients with serum IGF-I concentrations that were at least 350 ng/ml achieved moderate-to-good outcome scores at 6 months, compared to only one of five patients with lower concentrations (p < 0.05). These findings indicate that pharmacological concentrations of IGF-I may improve clinical outcome and nitrogen utilization in patients with moderate-to-severe head injury.


1998 ◽  
Vol 88 (5) ◽  
pp. 884-889 ◽  
Author(s):  
Steven A. Toms ◽  
Aleck Hercbergs ◽  
Jinbo Liu ◽  
Seiji Kondo ◽  
Talat Haqqi ◽  
...  

Object. Tamoxifen (TAM) has been found to be effective in inhibiting proliferation of glioblastoma cells in vitro, but clinical studies have been disappointing. The purpose of this study was to determine whether insulin-like growth factor I (IGF-I), a potential autocrine/paracrine mitogen produced by glioblastomas, interferes with the antimitogenic actions of TAM. Methods. Human glioblastoma cells were treated with or without TAM and/or IGF-I in vitro and evaluated for: viability by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenol tetrazolium bromide cleavage assay; apoptosis by histochemical analysis of nuclear morphology and 3′-OH DNA fragments; and expression of the IGF-I receptor, and the bcl-2, bcl-xL, and bax proteins by immunoblot analysis. In addition, p53 status was determined by DNA sequencing and by transient transfection with luciferase reporter plasmids containing wild-type or mutant p53. Results indicated that after 72 hours of exposure to 2 mg/ml TAM in vitro, 56.3% of WITG3 and 43.8% of U87-MG glioblastoma cells contained apoptotic nuclei (p < 0.01 compared with untreated cells). Apoptosis was independent of the presence of p53 because the WITG3 cells, in contrast to the U87-MG cells, expressed a mutant, nonfunctional p53. The WITG3 cells expressed IGF-I receptor proteins and demonstrated IGF-I binding. Exogenous IGF-I stimulated WITG3 cell proliferation and significantly (p < 0.05) antagonized the cytotoxic effects of TAM in a dose-dependent fashion; IGF-I, but not TAM, enhanced expression of bcl-2 and bcl-xL proteins; however, bax protein expression was unchanged by either treatment. Conclusions. Because many gliomas secrete large amounts of IGF-I in autocrine/paracrine growth pathways, these data may, in part, explain the failure of TAM to achieve clinical results as dramatic as those in vitro.


Sign in / Sign up

Export Citation Format

Share Document