Overexpression of bax in human glioma cell lines

1999 ◽  
Vol 91 (3) ◽  
pp. 483-489 ◽  
Author(s):  
Michael A. Vogelbaum ◽  
Jianxin X. Tong ◽  
Rajashri Perugu ◽  
David H. Gutmann ◽  
Keith M. Rich

Object. Cells that lose their ability to undergo apoptosis may promote the development of neoplasms and result in resistance to clinical treatment with DNA-damaging modalities such as radio- and chemotherapy. Four established human glioma cell lines that are resistant to apoptosis were transfected with the proapoptotic gene bax and assessed for their sensitivity to a proapoptotic stimulus.Methods. Two cell lines had a wild-type p53 genotype (U87 and D247MG) and two had mutant p53 genotypes (U138 and U373). Constitutive overexpression of murine bax was achieved in U138 and U373 only, which resulted in an increased sensitivity of these lines to the apoptosis-inducing effect of cytosine arabinoside (ara-C). Multiple attempts to produce constitutive overexpression of bax in U87 and D247MG cells resulted in spontaneous, near-complete cell loss. Vector-only control transfections were successful in all four cell lines. Inducible overexpression of bax was achieved in the U87 cells and elevated levels of BAX were observed as early as 6 hours after gene induction. This overexpression of BAX resulted in the spontaneous induction of apoptosis in these cells.Conclusions. Overexpression of BAX in four human glioma cell lines resulted in increased sensitivity to apoptosis. In the two lines that had a wild-type p53 genotype, overexpression of BAX produced spontaneous apoptosis. In contrast, the lines that had mutant, nonfunctional P53 did not undergo spontaneous apoptosis, but they were rendered more sensitive to the apoptosis-inducing effect of ara-C. Modulation of BAX expression may be a useful therapeutic modality for gliomas, regardless of p53 genotype.

1995 ◽  
Vol 82 (6) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jörg-Christian Tonn ◽  
Hans Kristian Haugland ◽  
Jaakko Saraste ◽  
Klaus Roosen ◽  
Ole Didrik Laerum

✓ The aim of this study was to investigate the antimigratory and antiinvasive potential of vincristine sulfate (VCR) on human glioma cells and to analyze whether phenytoin (5,5-diphenylhydantoin; DPH) might act synergistically with VCR. Vincristine affects the cytoplasmic microtubules; DPH has been reported to enhance VCR cytotoxicity in murine cells. In two human glioma cell lines, GaMG and D-37MG, we found VCR to reduce monolayer growth and colony formation in a dose-dependent fashion at concentrations of 10 ng/ml and above. Phenytoin increased the cytotoxic and cystostatic effects of VCR in monolayer cells but not in spheroids. Multicellular spheroids were used to investigate directional migration. A coculture system of GaMG and D-37MG spheroids with fetal rat brain aggregates was used to analyze and quantify tumor cell invasion. A dose-dependent inhibition of migration and invasion by VCR was observed in both cell lines without further enhancement by DPH. Immunofluorescence microscopy with antibodies against α-tubulin revealed dose-dependent morphological alterations in the microtubules when the cells were exposed to VCR but not after incubation with DPH. Based on the combination of standardized in vitro model systems currently in use and the present data, the authors strongly suggest that VCR inhibits migration and invasion of human glioma cells. This is not altered by DPH, which inhibits cell proliferation in combination with VCR.


2002 ◽  
Vol 97 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Seung-Ki Kim ◽  
Kyu-Chang Wang ◽  
Byung-Kyu Cho ◽  
Hyun-Tai Chung ◽  
Young-Yim Kim ◽  
...  

Object. Multiple gene replacements have been examined as a potential treatment modality for malignant gliomas. Nevertheless, no reports are available that detail the synergy, additivity, or antagonism of multiple genes. The aim of this study was to assess the interaction between p53 and p16 genes in the growth of glioma cell lines. Methods. The human glioma cell lines U87MG and U373MG were transduced using an adenoviral vector with Ad-p53, Ad-p16, or both. Western blotting was performed to determine the expression of the protein products of the transduced p53 and p16 genes. To establish whether the combination of Ad-p53 and Ad-p16 would be beneficial, the effects of gene combinations at the median inhibitory concentration level were analyzed using the isobologram method. Annexin assays and cell cycle analyses were performed on the transduced cells. Western blotting demonstrated the expression of p53 and p16 in transduced cells. Simultaneous exposure to Ad-p53 and Ad-p16 produced additive effects in both glioma cell lines. Experimental data points in U373MG lay near the Mode I line, indicating that the vectors had a different mode of action. The restoration of normal p53-encoded protein in the mutant cell lines induced apoptosis, whereas in the wild-type p53 cell lines, the overexpression of wild-type p53 resulted in a moderate degree of apoptosis and G1 arrest. Furthermore, Ad-p16 induced more marked G1 arrest than Ad-p53 in cells with wild-type p53. Conclusions. The results show that interaction between Ad-p53 and Ad-p16 is additive, regardless of p53 gene status.


1994 ◽  
Vol 127 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Abderrahim Merzak ◽  
Stéphane Raynal ◽  
Joan P. Rogers ◽  
David Lawrence ◽  
Geoffrey J. Pilkington

1991 ◽  
Vol 74 (3) ◽  
pp. 460-466 ◽  
Author(s):  
Tsuyoshi Matsumoto ◽  
Eiichi Tani ◽  
Keizo Kaba ◽  
Hideki Shindo ◽  
Katsuya Miyaji

✓ The expression of P-glycoprotein, a product of multidrug resistance gene 1, was studied by Western blotting and immunohistochemistry in five human glioma cell lines. One glioma cell line was resistant to vincristine, Adriamycin (doxorubicin), and etoposide, and the other four glioma cell lines were sensitive to each drug. The multidrug-resistant cell line showed a high expression of P-glycoprotein in Western blot analysis and a positive immunostaining for P-glycoprotein mainly along the cell membrane, whereas all multidrug-sensitive glioma cell lines demonstrated no expression of P-glycoprotein in Western blotting and no immunostaining for P-glycoprotein, thus showing a good correlation between the expression level of P-glycoprotein and the extent of multidrug resistance. In 18 human surgical glioma specimens, there was no evidence of complete absence of immunostaining for P-glycoprotein. With a definition of more than 20% of P-glycoprotein-positive cells as positive, from 10% to 20% as intermediate, and less than 10% as negative, immunostaining for P-glycoprotein was positive in one specimen and intermediate in six of 15 specimens taken from virgin gliomas, and positive in two specimens and intermediate in one of three recurrent gliomas treated previously with irradiation, ACNU (1-(4-amino-2-methyl-pyrimidine-5-yl)-methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride), cisplatin, vincristine, and/or procarbazine.


2011 ◽  
Vol 89 (3) ◽  
pp. 303-315 ◽  
Author(s):  
Ching-Hsein Chen ◽  
Yu-Jia Chang ◽  
Maurice S. B. Ku ◽  
King-Thom Chung ◽  
Jen-Tsung Yang

2006 ◽  
Vol 5 (9) ◽  
pp. 1211-1217 ◽  
Author(s):  
David Johansson ◽  
Anders Johansson ◽  
Kjell Grankvist ◽  
Ulrika Andersson ◽  
Roger Henriksson ◽  
...  

1991 ◽  
Vol 81 (6) ◽  
pp. 670-674 ◽  
Author(s):  
B. Macchi ◽  
B. Caronti ◽  
M. Pezzella ◽  
E. Bonmassar ◽  
G. Lauro

Sign in / Sign up

Export Citation Format

Share Document