Differential effects of vincristine and phenytoin on the proliferation, migration, and invasion of human glioma cell lines

1995 ◽  
Vol 82 (6) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jörg-Christian Tonn ◽  
Hans Kristian Haugland ◽  
Jaakko Saraste ◽  
Klaus Roosen ◽  
Ole Didrik Laerum

✓ The aim of this study was to investigate the antimigratory and antiinvasive potential of vincristine sulfate (VCR) on human glioma cells and to analyze whether phenytoin (5,5-diphenylhydantoin; DPH) might act synergistically with VCR. Vincristine affects the cytoplasmic microtubules; DPH has been reported to enhance VCR cytotoxicity in murine cells. In two human glioma cell lines, GaMG and D-37MG, we found VCR to reduce monolayer growth and colony formation in a dose-dependent fashion at concentrations of 10 ng/ml and above. Phenytoin increased the cytotoxic and cystostatic effects of VCR in monolayer cells but not in spheroids. Multicellular spheroids were used to investigate directional migration. A coculture system of GaMG and D-37MG spheroids with fetal rat brain aggregates was used to analyze and quantify tumor cell invasion. A dose-dependent inhibition of migration and invasion by VCR was observed in both cell lines without further enhancement by DPH. Immunofluorescence microscopy with antibodies against α-tubulin revealed dose-dependent morphological alterations in the microtubules when the cells were exposed to VCR but not after incubation with DPH. Based on the combination of standardized in vitro model systems currently in use and the present data, the authors strongly suggest that VCR inhibits migration and invasion of human glioma cells. This is not altered by DPH, which inhibits cell proliferation in combination with VCR.

1998 ◽  
Vol 88 (3) ◽  
pp. 529-534 ◽  
Author(s):  
Shiro Isoe ◽  
Hirofumi Naganuma ◽  
Shin Nakano ◽  
Atsushi Sasaki ◽  
Eiji Satoh ◽  
...  

Object. The aim of this study was to investigate the mechanism by which malignant glioma cells escape from growth inhibition mediated by transforming growth factor-β (TGF-β), a ubiquitous cytokine that inhibits cell proliferation by causing growth arrest in the G1 phase of the cell cycle. Methods. The authors measured the response of eight malignant glioma cell lines to the growth-inhibiting activity of TGF-β in vitro and the expression of TGF-β Types I and II receptors in malignant glioma cells. The effect of TGF-β on the expression of a p27Kip1 cyclin-dependent kinase inhibitor was also investigated to assess the downstream signal transmission from TGF-β receptors. All malignant glioma cell lines were insensitive to growth inhibition by TGF-β1 and TGF-β2. Analyses of TGF-β receptors by means of affinity labeling in which 125I-TGF-β1 was used showed that six glioma lines had both TGF-β Types I and II receptors on their cell surfaces, whereas two lines had very small amounts of TGF-β Type I and/or Type II receptors. Northern blot analysis showed that all tumor lines expressed variable levels of messenger RNAs for both TGF-β Types I and II receptors. Flow cytometric analyses revealed that treatment of malignant glioma cells with TGF-β1 significantly downregulated the expression of p27Kip1 protein in all malignant glioma cell lines except one. Conclusions. The authors suggest that most malignant glioma cells express TGF-β Types I and II receptors, which can transmit some signals downstream and that the loss of response to TGF-β growth inhibition may not be caused by an abnormality of the TGF-β receptors.


2001 ◽  
Vol 94 (6) ◽  
pp. 978-984 ◽  
Author(s):  
Christine Wild-Bode ◽  
Michael Weller ◽  
Wolfgang Wick

Object. Migration and invasion are important prerequisites for the infiltrative and destructive growth patterns of malignant gliomas. Infiltrative growth prevents complete tumor resection and causes significant neurological morbidity and mortality. Methods. The authors assessed the expression of matrix metalloproteinases (MMPs) at messenger RNA and protein levels, MMP-2 and MMP-9 activities, and expression levels of a panel of anti- and proapoptotic proteins of the BCL-2 family. They then correlated their findings with αVβ3 integrin expression and the migratory and invasive potentials in 12 human malignant glioma cell lines. Multiple MMPs were expressed by most cell lines. The levels of MMP-2 and MMP-3 and the activities of MMP-2 and MMP-9 correlated with tumor cell invasion. Migration and invasion were also correlated. Although the expression levels of αVβ3 integrin did not predict migration or invasion, a neutralizing αVβ3 integrin antibody inhibited migration and invasion selectively in cell lines that contained a high level of αVβ3 integrin expression, thus indicating the important role of αVβ3 integrin for migration and invasion in this subset of cell lines. An expression pattern of BCL-2 family proteins that favor resistance to apoptosis was associated with enhanced migration, invasion, and MMP activity. Wild-type p53 cell lines migrated farther than mutant p53 cell lines. Conclusions. Activities of MMP-2 and MMP-9 are the best predictors of glioma cell invasion. The αVβ3 integrin mediates migration and invasion in a subset of glioma cell lines, but these processes do not depend on αVβ3 integrin expression. Antiapoptotic BCL-2 family protein expression is a predictor of efficient migration and invasion.


1990 ◽  
Vol 73 (3) ◽  
pp. 436-440 ◽  
Author(s):  
Jun-ichi Kuratsu ◽  
Yukitaka Ushio

✓ Platelet-derived growth factor (PDGF) is produced by glioma cells. However, there is heterogeneity among glioma cell lines in the production of PDGF. It has been demonstrated that U251MG cells produce a PDGF-like molecule while U105MG cells do not. Trapidil, a specific antagonist of PDGF, competes for receptor binding with PDGF. Therefore, the inhibitory effect of trapidil on the proliferation of glioma cells was investigated in vitro using two glioma cell lines. At 100 µg/ml, trapidil significantly inhibited the proliferation of U251MG cells (which produce the PDGF-like molecule). At the same trapidil concentration, the proliferation of U105MG cells (which do not produce the PDGF-like molecule) was not inhibited. The inhibitory effect of trapidil was remarkable on Days 3 and 4 of culture. After 4 days of incubation, the proliferation of U251MG cells was 46% of the control preparation. Trapidil enhanced the antitumor effect of 3-((4-amino-2-methyl-5-pyrimidinyl)ethyl)-1-(2-chloroethyl)-1-nitro-sourea (ACNU) against U251MG cells. The enhancing effect was highest on Days 4 and 6 of culture. After 6 days of incubation in the presence of 100 µg/ml trapidil and 1 µg/ml ACNU, the proliferation of U251MG cells was 18% of the control preparation. These findings suggest that trapidil interrupts the autocrine loop at the PDGF and PDGF-receptor level and that combination therapy with trapidil and ACNU may be useful in the treatment of glioma.


1990 ◽  
Vol 73 (4) ◽  
pp. 594-600 ◽  
Author(s):  
William T. Couldwell ◽  
Jack P. Antel ◽  
Michael L. J. Apuzzo ◽  
Voon Wee Yong

✓ The protein kinase-C (PKC) second messenger system contributes to regulation of cell growth and differentiation. This study was undertaken to examine the effects of modulators of the PKC enzyme system on the state of differentiation and proliferation rates of human gliomas in vitro. The administration of the PKC-activating phorbol esters 4-beta-phorbol-12,13-dibutyrate (PDB) and phorbol-12-myristate-13-acetate (PMA) resulted in a dose-related inhibition of growth of human glioma cell lines in vitro as measured by 3H-thymidine uptake. The synthetic nonphorbol PKC activator (SC-9) produced an even more pronounced decrease of 3H-thymidine uptake. Diacylglycerol, an endogenous activator of the system, applied externally, transiently decreased the proliferation, in concordance with its short-lived existence in vivo. Conversely, the administration of 4-alpha-phorbol-12,13-didecanoate (α-PDD), a phorbol ester that binds but does not activate the enzyme, had no effect on the proliferation rate. At the dosages that maximally decreased proliferation, there was no evidence of direct glioma cell lysis induced by these agents as measured by a chromium-release assay. Immunocytochemical analysis and cytofluorometric measurement of glial fibrillary acidic protein (GFAP) staining in the treated cultures revealed an increase in GFAP staining over control cultures. In contrast to the response of glioma cells, nonmalignant human adult astrocytes treated with the PKC activators responded by increasing their proliferation rate. The authors postulate that the diametrically opposed effects of PKC activators on nonmalignant astrocytes versus glioma growth may be due to a high intrinsic PKC activity in glioma cells, with resultant down-regulation of enzyme activity following the administration of the pharmacological activators.


2000 ◽  
Vol 93 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Dali Yin ◽  
Norihiko Tamaki ◽  
Takashi Kokunai

Object. In an attempt to understand the roles of several apoptosis-related genes in human glioma cells, the authors investigated the relationship of wild-type p53, interleukin-1β—converting enzyme (ICE), caspase-3 (CPP32), bax, and bcl-2 to the apoptotic response of three glioma cell lines after treatment with etoposide.Methods. A human glioma cell line (U-87MG) that expresses wild-type p53, one that expresses mutant p53 (T-98G), and a T-98G derivative (T-98G/p53) that was transfected with a wild-type p53 expression vector (pCDM8-p53/neo) were used. Cell growth inhibition in response to etoposide was quantified using a modified methylthiazol tetrazolium colorimetric assay. Induction of apoptosis was evaluated using Hoechst 33258 staining and a DNA fragmentation assay. To study the expression of the apoptosis-related proteins and messenger RNAs in the three glioma cell lines, Western blotting and polymerase chain reaction were performed. A caspase assay and Western blot analysis were used to assess CPP32 and ICE protease activity. A CPP32 inhibition assay was used to determine whether a specific CPP32 inhibitor, DEVD-CHO, affects the apoptosis induced by etoposide in malignant glioma cells. Etoposide significantly inhibited the growth of U-87MG and T-98G/p53 cells in a dose-dependent manner compared with the growth of the T-98G cells. Treatment with low concentrations of etoposide resulted in the increased expression of wild-type p53; it also initiated CPP32 activity and induced apoptosis in the U-87MG cells. Apoptosis was not induced in T-98G cells at low concentrations of etoposide, although it was induced at high concentrations. Furthermore, low concentrations of etoposide also induced apoptosis in the T-98G/p53 cells by enhancing the expression of transfected wild-type p53, decreasing the expression of bcl-2, and activating CPP32 activity. However, etoposide did not alter the expression of bax and did not initiate ICE activity in these three glioma cell lines. Etoposide-induced apoptosis can be suppressed by the CPP32 inhibitor DEVD-CHO.Conclusions. These findings indicate that wild-type p53, CPP32, and bcl-2 may mediate apoptosis induced by etoposide. Forced expression of wild-type p53 increases etoposide cytotoxicity in human glioma cells by inducing apoptosis and may have important therapeutic implications.


1991 ◽  
Vol 74 (3) ◽  
pp. 460-466 ◽  
Author(s):  
Tsuyoshi Matsumoto ◽  
Eiichi Tani ◽  
Keizo Kaba ◽  
Hideki Shindo ◽  
Katsuya Miyaji

✓ The expression of P-glycoprotein, a product of multidrug resistance gene 1, was studied by Western blotting and immunohistochemistry in five human glioma cell lines. One glioma cell line was resistant to vincristine, Adriamycin (doxorubicin), and etoposide, and the other four glioma cell lines were sensitive to each drug. The multidrug-resistant cell line showed a high expression of P-glycoprotein in Western blot analysis and a positive immunostaining for P-glycoprotein mainly along the cell membrane, whereas all multidrug-sensitive glioma cell lines demonstrated no expression of P-glycoprotein in Western blotting and no immunostaining for P-glycoprotein, thus showing a good correlation between the expression level of P-glycoprotein and the extent of multidrug resistance. In 18 human surgical glioma specimens, there was no evidence of complete absence of immunostaining for P-glycoprotein. With a definition of more than 20% of P-glycoprotein-positive cells as positive, from 10% to 20% as intermediate, and less than 10% as negative, immunostaining for P-glycoprotein was positive in one specimen and intermediate in six of 15 specimens taken from virgin gliomas, and positive in two specimens and intermediate in one of three recurrent gliomas treated previously with irradiation, ACNU (1-(4-amino-2-methyl-pyrimidine-5-yl)-methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride), cisplatin, vincristine, and/or procarbazine.


1999 ◽  
Vol 91 (3) ◽  
pp. 483-489 ◽  
Author(s):  
Michael A. Vogelbaum ◽  
Jianxin X. Tong ◽  
Rajashri Perugu ◽  
David H. Gutmann ◽  
Keith M. Rich

Object. Cells that lose their ability to undergo apoptosis may promote the development of neoplasms and result in resistance to clinical treatment with DNA-damaging modalities such as radio- and chemotherapy. Four established human glioma cell lines that are resistant to apoptosis were transfected with the proapoptotic gene bax and assessed for their sensitivity to a proapoptotic stimulus.Methods. Two cell lines had a wild-type p53 genotype (U87 and D247MG) and two had mutant p53 genotypes (U138 and U373). Constitutive overexpression of murine bax was achieved in U138 and U373 only, which resulted in an increased sensitivity of these lines to the apoptosis-inducing effect of cytosine arabinoside (ara-C). Multiple attempts to produce constitutive overexpression of bax in U87 and D247MG cells resulted in spontaneous, near-complete cell loss. Vector-only control transfections were successful in all four cell lines. Inducible overexpression of bax was achieved in the U87 cells and elevated levels of BAX were observed as early as 6 hours after gene induction. This overexpression of BAX resulted in the spontaneous induction of apoptosis in these cells.Conclusions. Overexpression of BAX in four human glioma cell lines resulted in increased sensitivity to apoptosis. In the two lines that had a wild-type p53 genotype, overexpression of BAX produced spontaneous apoptosis. In contrast, the lines that had mutant, nonfunctional P53 did not undergo spontaneous apoptosis, but they were rendered more sensitive to the apoptosis-inducing effect of ara-C. Modulation of BAX expression may be a useful therapeutic modality for gliomas, regardless of p53 genotype.


2018 ◽  
Vol 46 (3) ◽  
pp. 1055-1064 ◽  
Author(s):  
Xin Chen ◽  
Deheng Li ◽  
Yang Gao ◽  
Wei Tang ◽  
Lao IW ◽  
...  

Background/Aims: Long noncoding RNAs (lncRNAs) are a novel class of protein-noncoding transcripts that are aberrantly expressed in multiple diseases including cancers. LINC00152 has been identified as an oncogene involved in many kinds of cancer; however, its expression pattern and function in human glioma remain unclear. Methods: Quantitative real-time polymerase chain reaction was carried out to measure LINC00152 expression in human glioma cell lines and tissues. CCK-8 and EdU assays were performed to assess cell proliferation, and scratch assays and Transwell assays were used to assess cell migration and invasion, respectively. Luciferase reporter assays were carried out to determine the interaction between miR-16 and LINC00152. In vivo experiments were conducted to assess tumor formation. Results: LINC00152 was found to be significantly upregulated in human glioma cell lines and clinical samples. Knockdown of LINC00152 suppressed glioma cell proliferation, migration, and invasion in vitro. In vivo assays in nude mice confirmed that LINC00152 knockdown inhibits tumor growth. Furthermore, mechanistic investigation showed that LINC00152 binds to miR-16 in a sequence-specific manner and suppresses its expression. miR-16 inhibition strongly attenuated LINC00152 knockdown–mediated suppressive effects on proliferation, migration, and invasion. Moreover, LINC00152 induced BMI1 expression by sponging miR-16; this effect further promoted glioma cell proliferation and invasion. Conclusion: We regard LINC00152 as an oncogenic lncRNA promoting glioma cell proliferation and invasion and as a potential target for human glioma treatment.


2005 ◽  
Vol 102 (6) ◽  
pp. 1055-1068 ◽  
Author(s):  
Roksana Rodak ◽  
Hisashi Kubota ◽  
Hideyuki Ishihara ◽  
Hans-Pietro Eugster ◽  
Dilek Könü ◽  
...  

Object. Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Methods. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 ± 28 µg/ml and 56 ± 23 µg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 ± 3 µg/ml for the cell lines and a mean EC50 of 3.5 ± 1.7 µg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate—ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription—polymerase chain reaction. Conclusions. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell apoptosis and inhibiting tumor-derived VEGF production.


2020 ◽  
Vol 52 (12) ◽  
pp. 1394-1403
Author(s):  
Tuo Wang ◽  
Yan Zhang ◽  
Bo Cui ◽  
Maode Wang ◽  
Ya Li ◽  
...  

Abstract Human glioma is the most common primary brain tumor and is associated with high morbidity and mortality. Aberrant expressions of microRNAs (miRNAs) are involved in glioma progression. In the present study, we aimed to elucidate the roles of miR-4530 in the pathogenesis of gliomas. miR-4530 expression was examined in human glioma clinical tissues and cell lines including U251 and T98G. The target gene of miR-4530, RTEL1, was predicted with online tools and validated by luciferase reporter assay. Lentivirus infection, transfection of plasmids, and miRNA mimics were used to manipulate gene expression. Cell proliferation was determined using the CCK-8 method, and migration and invasion assays were determined with transwell experiments. Colony formation was measured by crystal violet staining, while apoptosis was determined by Annexin V/PI staining. The anti-tumor effects of miR-4530 were evaluated in nude mice xenografted using U251 cells. Our results showed that miR-4530 was significantly down-regulated in human glioma tissues and cell lines. miR-4530 over-expression inhibited the malignant behaviors of U251 and T98G cells, including reduced proliferation, diminished colony formation, migration and invasion, and increased apoptosis. Further mechanistic investigations revealed that RTEL1 is a direct functional target of miR-4530 in gliomas, and its over-expression remarkably reverses the effects of miR-4530 mimics on inhibiting these malignant behaviors. In addition, miR-4530 over-expression inhibited the growth of xenografted U251 glioma in nude mice. Therefore, miR-4530 acts as a tumor-suppressor gene and inhibits the malignant biological behaviors of human glioma cells, which is associated with directly targeting RTEL1. The miR-4530/RTEL1 axis is a potential therapeutic target for gliomas.


Sign in / Sign up

Export Citation Format

Share Document