Coralline hydroxyapatite and laminectomy-derived bone as adjuvant graft material for lumbar posterolateral fusion

2005 ◽  
Vol 3 (4) ◽  
pp. 271-275 ◽  
Author(s):  
Chien-Jen Hsu ◽  
Wen-Ying Chou ◽  
Hsiu-Peng Teng ◽  
Wei-Ning Chang ◽  
Yi-Jiun Chou

Object. The purpose of this study was to evaluate the effectiveness of coralline hydroxyapatite (CHA) and laminectomy-derived bone as an adjuvant graft material when combined with autogenous iliac bone graft (AIBG) in posterolateral fusion (PLF). Methods. This prospective, case—control study involved 58 patients who underwent lumbar instrumentation-augmented PLF for degenerative spinal stenosis—induced segmental instability between July 2000 and June 2001. The patients were divided into three groups. Laminectomy bone and AIBG were placed in the right intertransverse process space in Group 1 (20 patients), CHA and AIBG were placed in Group 2 (19 patients), and laminectomy bone and CHA were placed in Group 3 (19 patients). Pure autogenous iliac cancellous bone graft was placed in the left intertransverse process space in all three groups of patients. Successful fusion was determined by two spine surgeons after examining the plain, anteroposterior, bilateral oblique, and lateral flexion—extension radiographs. If the examiners did not agree on fusion status, fine-cut computerized tomography scans of the fusion mass were used to make the final decision. The chi-square test was used to compare the fusion rate at different time intervals among the three groups. Conclusions. Pure AIBG placed in left intertransverse process space was associated with the best fusion rate. After 6 months, CHA produced a comparable result to laminectomy-derived bone when combined with AIBG. When laminectomy bone was mixed with CHA, the combination failed to yield a satisfactory fusion rate (57.9%) even 1 year after surgery if no AIBG was added.

2003 ◽  
Vol 99 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Giovanni La Rosa ◽  
Alfredo Conti ◽  
Fabio Cacciola ◽  
Salvatore Cardali ◽  
Domenico La Torre ◽  
...  

Object. Posterolateral fusion involving instrumentation-assisted segmental fixation represents a valid procedure in the treatment of lumbar instability. In cases of anterior column failure, such as in isthmic spondylolisthesis, supplemental posterior lumbar interbody fusion (PLIF) may improve the fusion rate and endurance of the construct. Posterior lumbar interbody fusion is, however, a more demanding procedure and increases costs and risks of the intervention. The advantages of this technique must, therefore, be weighed against those of a simple posterior lumbar fusion. Methods. Thirty-five consecutive patients underwent pedicle screw fixation for isthmic spondylolisthesis. In 18 patients posterior lumbar fusion was performed, and in 17 patients PLIF was added. Clinical, economic, functional, and radiographic data were assessed to determine differences in clinical and functional results and biomechanical properties. At 2-year follow-up examination, the correction of subluxation, disc height, and foraminal area were maintained in the group in which a PLIF procedure was performed, but not in the posterolateral fusion—only group (p < 0.05). Nevertheless, no statistical intergroup differences were demonstrated in terms of neurological improvement (p = 1), economic (p = 0.43), or functional (p = 0.95) outcome, nor in terms of fusion rate (p = 0.49). Conclusions. The authors' findings support the view that an interbody fusion confers superior mechanical strength to the spinal construct; when posterolateral fusion is the sole intervention, progressive loss of the extreme correction can be expected. Such mechanical insufficiency, however, did not influence clinical outcome.


2002 ◽  
Vol 96 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Frank Kandziora ◽  
Georg Schollmeier ◽  
Matti Scholz ◽  
Jan Schaefer ◽  
Alexandra Scholz ◽  
...  

Object. The purpose of this study was to compare the characteristics of interbody fusion achieved using an autologous tricortical iliac crest bone graft with those of a cylinder- and a box-design cage in a sheep cervical spine model. This study was designed to determine whether there are differences between three interbody fusion procedures in: 1) ability to preserve postoperative distraction; 2) biomechanical stability; and 3) histological characteristics of intervertebral bone matrix formation. Methods. Twenty-four sheep underwent C3–4 discectomy and fusion in which the following were used: Group 1, autologous tricortical iliac crest bone graft (eight sheep); Group 2, titanium cylinder-design cage filled with autologous iliac crest bone graft (eight sheep); and Group 3, titanium box-design cage filled with autologous iliac crest graft (eight sheep). Radiography was performed pre- and postoperatively and after 1, 2, 4, 8, and 12 weeks. At the same time points, disc space height, intervertebral angle, and lordosis angle were measured. After 12 weeks, the sheep were killed, and fusion sites were evaluated by obtaining functional radiographs in flexion and extension. Quantitative computerized tomography scans were acquired to assess bone mineral density, bone mineral content, and bone callus volume. Biomechanical testing was performed in flexion, extension, axial rotation, and lateral bending. Stiffness, range of motion, neutral zone, and elastic zone were determined. Histomorphological and histomorphometric analyses were performed, and polychrome sequential labeling was used to determine the time frame of new bone formation. Over a 12-week period significantly higher values for disc space height and intervertebral angle were shown in cage-treated sheep than in those that received bone graft. Functional radiographic assessment revealed significantly lower residual flexion—extension movement in sheep with the cylinder cage-fixed spines than in those that received bone graft group. The cylinder—design cages showed significantly higher values for bone mineral content, bone callus content, and stiffness in axial rotation and lateral bending than the other cages or grafts. Histomorphometric evaluation and polychrome sequential labeling showed a more progressed bone matrix formation in the cylindrical cage group than in both other groups. Conclusions. Compared with the tricortical bone graft, both cages showed significantly better distractive properties. The cylindrical cage demonstrated a significantly higher biomechanical stiffness and an accelerated interbody fusion compared with the box-design cage and the tricortical bone graft. The differences in bone matrix formation within both cages were the result of the significantly lower stress shielding on the bone graft by the cylinder-design cage.


2000 ◽  
Vol 93 (1) ◽  
pp. 45-52 ◽  
Author(s):  
W. Jeffrey Elias ◽  
Nathan E. Simmons ◽  
George J. Kaptain ◽  
James B. Chadduck ◽  
Richard Whitehill

Object. The authors reviewed their series of patients to quantify clinical and radiographic complications in those who underwent a posterior lumbar interbody fusion (PLIF) procedure in which a threaded interbody cage (TIC) was implanted. Methods. Sixty-seven patients underwent a posterior lumbar interbody fusion procedure in which a TIC was used. The authors excluded patients who underwent procedures in which other instrumentation was used or a nondorsal approach was performed. Fifteen percent of the cases (10 patients) were complicated by laceration of the dura. In three cases, bilateral implantation could not be performed. The average blood loss was 670 ml for all cases, and blood transfusion was required in 25% of the cases (17 patients). The rate of minor wound complication was 4.5% (three patients). One patient died. The average period of hospitalization was 4.25 days. Twenty-eight patients (42%) experienced significant low-back pain 3 months postoperatively, and in 10 (15%) of these cases it persisted beyond 1 year. In 10 patients postoperative radiculopathy was demonstrated, and magnetic resonance imaging revealed epidural fibrosis in six patients, arachnoiditis in one, and a recurrent disc herniation in one. One patient incurred a permanent motor deficit with sexual dysfunction. Pseudarthrosis was suggested radiographically with evidence of motion on lateral flexion—extension radiographs (10 cases), lucencies around the implants (seven cases), and posterior migration of the cage (two cases). Additional procedures (in 14 patients) consisted primarily of transverse process fusion with pedicle screw and plate augmentation for persistent back pain and radiographically demonstrated signs of spinal instability. In two patients with radiculopathy, migration of the TIC required that it be removed. Graft material that extruded from one implant necessitated its removal. In one patient scarectomy was performed. Conclusions. Our high incidence of TIC-related complications in PLIF is inconsistent with that reported in previous studies.


2003 ◽  
Vol 99 (2) ◽  
pp. 221-228 ◽  
Author(s):  
Hideki Sudo ◽  
Itaru Oda ◽  
Kuniyoshi Abumi ◽  
Manabu Ito ◽  
Yoshihisa Kotani ◽  
...  

Object. Posterior lumbar interbody fusion (PLIF) was developed to overcome the limitations of posterolateral fusion in correcting spinal deformity and maintaining lumbar lordosis. In this study the authors compare the biomechanical effects of three different posterior reconstructions on the adjacent motion segment. Methods. Ten calf spinal (L2—S1) specimens underwent nondestructive flexion—extension testing (± 6 Nm). The specimens were destabilized at the L5—S1 levels after intact testing. This was followed by pedicle screw fixation with and without interbody cages as follows: 1) with straight rods (“aligned” posterolateral fusion); 2) with kyphotically prebent rods (“kyphotic” posterolateral fusion); and 3) with interbody cages combined with straight rods (“aligned” PLIF/posterolateral fusion). The range of motion (ROM) of the operative segments, the intradiscal pressure (IDP), and longitudinal lamina strain in the superior adjacent segment (L4–5) were analyzed. The ROM associated with aligned PLIF/posterolateral fusion-treated specimens was significantly less than both the aligned and kyphotic posterolateral fusion-treated procedures in both flexion and extension loading (p < 0.05). The aligned PLIF/posterolateral fusion was associated with greater IDP and the lamina strain compared with the aligned and kyphotic posterolateral fusion groups in flexion loading. Under extension loading, greater IDP and lamina strain were present in the kyphotic posterolateral fusion group than in the aligned posterolateral fusion group. The highest IDP and lamina strain were shown in the aligned PLIF/posterolateral fusion group. Conclusions. Compared with kyphotic posterolateral fusion, PLIF may lead to even higher load at the superior adjacent level because of the increased stiffness of the fixed segments even if local kyphosis is corrected by PLIF.


2002 ◽  
Vol 96 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Christopher E. Wolfla ◽  
Dennis J. Maiman ◽  
Frank J. Coufal ◽  
James R. Wallace

Object. Intertransverse arthrodesis in which instrumentation is placed is associated with an excellent fusion rate; however, treatment of patients with symptomatic nonunion presents a number of difficulties. Revision posterior and traditional anterior procedures are associated with methodological problems. For example, in the latter, manipulation of the major vessels from L-2 to L-4 may be undesirable. The authors describe a method for performing retroperitoneal lumbar interbody fusion (LIF) in which a threaded cage is placed from L-2 through L-5 via a lateral trajectory, and they also detail a novel technique for implanting a cage from L-5 to S-1 via an oblique trajectory. Although they present data obtained over a 2-year period in the study of 15 patients, the focus of this report is primarily on describing the surgical procedure. Methods. The lateral lumbar spine was exposed via a standard retroperitoneal approach. Using the anterior longitudinal ligament as a landmark, the L2–3 through L4–5 levels were fitted with instrumentation via a true lateral trajectory; the L5—S1 level was fitted with instrumentation via an oblique trajectory. A single cage was placed at each instrumented level. Fifteen symptomatic patients in whom previous lumbar fusion had failed underwent retroperitoneal LIF. Thirty-eight levels were fitted with instrumentation. There have been no instrumentation-related failures, and fusion has occurred at 37 levels during the 2-year postoperative period. Conclusions. The use of retroperitoneal LIF in which threaded fusion cages are used avoids the technical difficulties associated with repeated posterior procedures. In addition, it allows L2—S1 instrumentation to be placed anteriorly via a single surgical approach. This construct has been shown to be biomechanically sound in animal models, and it appears to be a useful alternative for the management of failed multilevel intertransverse arthrodesis.


2001 ◽  
Vol 94 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Paul D. Sawin ◽  
Curtis A. Dickman ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
William D. Bichard ◽  
...  

Object. The use of corticosteroid agents during the healing phase after spinal arthrodesis remains controversial. Although anecdotal opinion suggests that corticosteroids may inhibit bone fusion, such an effect has not been substantiated in clinical trials or laboratory investigations. This study was undertaken to delineate the effect of exogenous corticosteroid administration on bone graft incorporation in an experimental model of posterolateral lumbar fusion. Methods. An established, well-validated model of lumbar intertransverse process spinal fusion in the rabbit was used. Twenty-four adult New Zealand white rabbits underwent L5–6 bilateral posterolateral spinal fusion in which autogenous iliac crest bone graft was used. After surgery, the animals were randomized into two treatment groups: a control group (12 rabbits) that received intramuscular injections of normal saline twice daily and a dexamethasone group (12 rabbits) that received intramuscular dexamethasone (0.05 mg/kg) twice daily. After 42 days, the animals were killed and the integrity of the spinal fusions was assessed by radiography, manual palpation, and biomechanical testing. In seven (58%) of the 12 control rabbits, solid posterolateral fusion was achieved. In no dexamethasone-treated rabbits was successful fusion achieved (p = 0.003). Tensile strength and stiffness of excised spinal segments were significantly lower in dexamethasone-treated animals than in control animals (tensile strength 91.4 ± 30.6 N and 145.3 ± 48.2, respectively, p = 0.004; stiffness 31.4 ± 11.6 and 45.0 ± 15.2 N/mm, respectively, p = 0.02). Conclusions. The corticosteroid agent dexamethasone inhibited bone graft incorporation in a rabbit model of single-level posterolateral lumbar spinal fusion, inducing a significantly higher rate of nonunion, compared with that in saline-treated control animals.


2021 ◽  
Vol 11 (9) ◽  
pp. 1491-1496
Author(s):  
Xiaojiang Li ◽  
Xudong Zhang ◽  
Shanshan Dong ◽  
Haijun Li ◽  
Chunlan Wang ◽  
...  

This study aimed to explore the safety and efficacy of using nano-hydroxyapatite/polyamide (N-HA/PA) composite in anterior cervical vertebral body subtotal corpectomy and interbody fusion. Total 50 patients with cervical spondylotic myelopathy were enrolled to undergo anterior cervical spondylectomy. Bone graft pedicles were compounded with N-HA/PA and intervertebral body fusion was performed. Study outcomes included surgical efficacy and the degree of fusion. Patients in whom vertebral body fusion was performed with N-HA/PA composite pedicles had significantly improved symptoms. The postoperative Japanese Orthopaedic Association scores increased to 18.56±4.37 from 11.37±3.52, reflecting an improvement rate of 87.3%. The composite pedicle fusion rate was 96.4%. Therefore, N-HA/PA composite pedicle as a bone graft material in fusion surgery provides significant therapeutic efficacy. Moreover, the composite pedicle fusion rate is high, making it ideal for anterior cervical vertebral body subtotal corpectomy and fusion.


1999 ◽  
Vol 91 (2) ◽  
pp. 186-192 ◽  
Author(s):  
Siviero Agazzi ◽  
Alain Reverdin ◽  
Daniel May

Object. The authors conducted a retrospective study to provide an independent evaluation of posterior lumbar interbody fusion (PLIF) in which impacted carbon cages were used. Interbody cages have been developed to replace tricortical interbody grafts in anterior and PLIF procedures. Superior fusion rates and clinical outcomes have been claimed by the developers. Methods. In a retrospective study, the authors evaluated 71 consecutive patients in whom surgery was performed between 1995 and 1997. The median follow-up period was 28 months. Clinical outcome was assessed using the Prolo scale. Fusion results were interpreted by an independent radiologist. The fusion rate was 90%. Overall, 67% of the patients were satisfied with their outcome and would undergo the same operation again. Based on the results of the Prolo scale, however, in only 39% of the patients were excellent or good results achieved. Forty-six percent of the work-eligible patients resumed their working activity. Clinical outcome and return-to-work status were significantly associated with socioeconomic factors such as preoperative employment (p = 0.03), compensation issues (p = 0.001), and length of preoperative sick leave (p = 0.01). Radiographically demonstrated fusion was not statistically related to clinical outcome (p = 0.2). Conclusions. This is one of the largest independent series in which PLIF with cages has been evaluated. The results show that the procedure is safe and effective with a 90% fusion rate and a 66% overall satisfaction rate, which compare favorably with those of traditional fixation techniques but fail to match the higher results claimed by the innovators of the cage techniques. The authors' experience confirms the reports of others that many patients continue to experience incapacitating back pain despite successful fusion and neurological recovery.


1998 ◽  
Vol 88 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Paul D. Sawin ◽  
Vincent C. Traynelis ◽  
Arnold H. Menezes

Object. Autogeneic bone graft is often incorporated into posterior cervical stabilization constructs as a fusion substrate. Iliac crest is used frequently, although donor-site morbidity can be substantial. Rib is used rarely, despite its accessibility, expandability, unique curvature, and high bone morphogenetic protein content. The authors present a comparative analysis of autogeneic rib and iliac crest bone grafts, with emphasis on fusion rate and donor-site morbidity. Methods. A review was conducted of records and radiographs from 600 patients who underwent cervical spinal fusion procedures in which autogeneic bone grafts were used. Three hundred patients underwent rib harvest and posterior cervical fusion. The remaining 300 patients underwent iliac crest harvest (248 for an anterior cervical fusion and 52 for posterior fusion). The analysis of fusion focused on the latter subgroup; donor-site morbidity was determined by evaluating the entire group. Fusion criteria included bony trabeculae traversing the donor—recipient interface and long-term stability on flexion—extension radiographs. Graft morbidity was defined as any untoward event attributable to the graft harvest. Statistical comparisons were facilitated by using Fisher's exact test. Conclusions. Demographic data obtained in both groups were comparable. Rib constructs were placed in the following regions: occipitocervical (196 patients), atlantoaxial (35 patients), and subaxial cervical spine (69 patients). Iliac crest grafts were placed in the occipitocervical (28 patients), atlantoaxial (10 patients), and subaxial cervical (14 patients) regions. Fusion occurred in 296 (98.8%) of 300 rib graft and 49 (94.2%) of 52 iliac crest graft constructs (p = 0.056). Graft morbidity was greater with iliac crest than with rib (p < 0.00001). Donor-site morbidity for the rib graft was 3.7% and included pneumonia (eight patients), persistent atelectasis (two patients), and superficial wound dehiscence (one patient). Pneumothorax, intercostal neuralgia, and chronic chest wall pain were not encountered. Iliac crest morbidity occurred in 25.3% of the patients and consisted of chronic donor-site pain (52 patients), wound dehiscence (eight patients), pneumonia (seven patients), meralgia paresthetica (four patients), hematoma requiring evacuation (three patients), and iliac spine fracture (two patients). Even when chronic pain was not considered, morbidity encountered in obtaining iliac crest still exceeded that encountered with rib harvest (p = 0.035). The fusion rate and donor-site morbidity for rib autograft compare favorably with those for iliac crest when used in posterior cervical constructs. To the authors' knowledge, this represents the largest series to date in which the safety and efficacy of using autogeneic bone graft materials in spinal surgery are critically analyzed.


1987 ◽  
Vol 67 (2) ◽  
pp. 284-287 ◽  
Author(s):  
Matthew R. Quigley ◽  
Kenneth Heiferman ◽  
Hau C. Kwaan ◽  
Danko Vidovich ◽  
Peter Nora ◽  
...  

✓ Laser-assisted vascular anastomosis (LAVA) is associated with a significant aneurysm problem when it is applied to small arteries. The etiology of this phenomenon was investigated by creating arteriotomies of different lengths and orientation in the rat carotid artery and sealing them with the milliwatt CO2 laser. It was found that increasing the arteriotomy length from 0.5 to 1.0 mm significantly raised aneurysm occurrence (4/17 vs. 25/28, chi-square: p < 0.001) regardless of orientation. Systemic hypertension (systolic blood pressure ≥ 170 mm Hg) also significantly affected the aneurysm rate among the 0.5-mm arteriotomy group, raising aneurysm occurrence from 23.5% (4/17) to 100% (14/14) (p < 0.001). Assuming that the stay-sutures used for LAVA's act as rigid supports, the rate of aneurysm occurrence must be related to the distance between sutures. This phenomenon has been exploited to create a reliable aneurysm model.


Sign in / Sign up

Export Citation Format

Share Document