SPIRE spinous process stabilization plate: biomechanical evaluation of a novel technology

2006 ◽  
Vol 4 (2) ◽  
pp. 160-164 ◽  
Author(s):  
Jeremy C. Wang ◽  
David Spenciner ◽  
James C. Robinson

Object The authors studied the biomechanical properties of a novel spinous process stabilization plate (CD HORIZON SPIRE Spinal System) and present the results in comparison with those of other posterior fixation methods. Methods Ten functional cadaveric lumbar segments were subjected to nondestructive quasistatic loading forces in 10 different conditions: intact, destabilized (discectomy), fitted with spinous process plate (SPP) alone, with anterior-column support (ACS) alone, ACS with SPP, ACS with posterior translaminar facet screw (PTFS) fixation, ACS with unilateral pedicle screw and rod (UPSR) fixation, ACS with bilateral pedicle screw and rod (BPSR) fixation, UPSR alone, or BPSR alone. Stiffness and range of motion (ROM) data were compared using a repeated-measures, one-way analysis of variance. The construct with greatest mean limitation of flexion–extension ROM was ACS/SPP at 4.14° whereas it was 5.75° for ACS/UPSR fixation, 5.03° for ACS/BPSR fixation, and 10.13° for the intact spine. The SPIRE plate alone also provided greater flexion and extension stiffness, with less ROM than other posterior stabilization options. Fixation with BPSR with or without ACS resulted in the stiffest construct in lateral bending and axial rotation. The SPP and UPSR fixation groups were equivalent in resisting lateral bending and axial rotation forces with or without ACS. Conclusions The SPIRE plate effectively stabilized the spine, and the test results compare favorably with other fixation techniques that are more time consuming to perform and have greater inherent risks.

2019 ◽  
Vol 19 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Ilyas M Eli ◽  
Michael Karsy ◽  
Darrel S Brodke ◽  
Kent N Bachus ◽  
William T Couldwell ◽  
...  

Abstract BACKGROUND Occipitocervical instability may result from transcondylar resection of the occipital condyle. Initially, patients may be able to maintain a neutral alignment but severe occipitoatlantal subluxation may subsequently occur, with cranial settling, spinal cord kinking, and neurological injury. OBJECTIVE To evaluate the ability of posterior fixation constructs to prevent progression to severe deformity after radical unilateral condylectomy. METHODS Eight human cadaveric specimens (Oc-C2) underwent biomechanical testing to compare stiffness under physiological loads (1.5 N m). A complete unilateral condylectomy was performed to destabilize one Oc-C1 joint, and the contralateral joint was left intact. Unilateral Oc-C1 or Oc-C2 constructs on the resected side and bilateral Oc-C1 or Oc-C2 constructs were tested. RESULTS The bilateral Oc-C2 construct provided the greatest stiffness, but the difference was only statistically significant in certain planes of motion. The unilateral constructs had similar stiffness in lateral bending, but the unilateral Oc-C1 construct was less stiff in axial rotation and flexion-extension than the unilateral Oc-C2 construct. The bilateral Oc-C2 construct was stiffer than the unilateral Oc-C2 construct in axial rotation and lateral bending, but there was no difference between these constructs in flexion-extension. CONCLUSION Patients who undergo a complete unilateral condylectomy require close surveillance for occipitocervical instability. A bilateral Oc-C2 construct provides suitable biomechanical strength, which is superior to other constructs. A unilateral construct decreases abnormal motion but lacks the stiffness of a bilateral construct. However, given that most patients undergo a partial condylectomy and only a small proportion of patients develop instability, there may be scenarios in which a unilateral construct may be appropriate, such as for temporary internal stabilization.


Neurosurgery ◽  
2006 ◽  
Vol 58 (3) ◽  
pp. 516-521 ◽  
Author(s):  
Samir B. Lapsiwala ◽  
Paul A. Anderson ◽  
Ashish Oza ◽  
Daniel K. Resnick

Abstract OBJECTIVE: We performed a biomechanical comparison of several C1 to C2 fixation techniques including crossed laminar (intralaminar) screw fixation, anterior C1 to C2 transarticular screw fixation, C1 to 2 pedicle screw fixation, and posterior C1 to C2 transarticular screw fixation. METHODS: Eight cadaveric cervical spines were tested intact and after dens fracture. Four different C1 to C2 screw fixation techniques were tested. Posterior transarticular and pedicle screw constructs were tested twice, once with supplemental sublaminar cables and once without cables. The specimens were tested in three modes of loading: flexion-extension, lateral bending, and axial rotation. All tests were performed in load and torque control. Pure bending moments of 2 nm were applied in flexion-extension and lateral bending, whereas a 1 nm moment was applied in axial rotation. Linear displacements were recorded from extensometers rigidly affixed to the C1 and C2 vertebrae. Linear displacements were reduced to angular displacements using trigonometry. RESULTS: Adding cable fixation results in a stiffer construct for posterior transarticular screws. The addition of cables did not affect the stiffness of C1 to C2 pedicle screw constructs. There were no significant differences in stiffness between anterior and posterior transarticular screw techniques, unless cable fixation was added to the posterior construct. All three posterior screw constructs with supplemental cable fixation provide equal stiffness with regard to flexion-extension and axial rotation. C1 lateral mass-C2 intralaminar screw fixation restored resistance to lateral bending but not to the same degree as the other screw fixation techniques. CONCLUSION: All four screw fixation techniques limit motion at the C1 to 2 articulation. The addition of cable fixation improves resistance to flexion and extension for posterior transarticular screw fixation.


1993 ◽  
Vol 79 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Vincent C. Traynelis ◽  
Paul A. Donaher ◽  
Robert M. Roach ◽  
H. Kojimoto ◽  
Vijay K. Goel

✓ Traumatic cervical spine injuries have been successfully stabilized with plates applied to the anterior vertebral bodies. Previous biomechanical studies suggest, however, that these devices may not provide adequate stability if the posterior ligaments are disrupted. To study this problem, the authors simulated a C-5 teardrop fracture with posterior ligamentous instability in human cadaveric spines. This model was used to compare the immediate biomechanical stability of anterior cervical plating, from C-4 to C-6, to that provided by a posterior wiring construct over the same levels. Stability was tested in six modes of motion: flexion, extension, right and left lateral bending, and right and left axial rotation. The injured/plate-stabilized spines were more stable than the intact specimens in all modes of testing. The injured/posterior-wired specimens were more stable than the intact spines in axial rotation and flexion. They were not as stable as the intact specimens in the lateral bending or extension testing modes. The data were normalized with respect to the motion of the uninjured spine and compared using repeated measures of analysis of variance, the results of which indicate that anterior plating provides significantly more stability in extension and lateral bending than does posterior wiring. The plate was more stable than the posterior construct in flexion loading; however, the difference was not statistically significant. The two constructs provide similar stability in axial rotation. This study provides biomechanical support for the continued use of bicortical anterior plate fixation in the setting of traumatic cervical spine instability.


2016 ◽  
Vol 24 (3) ◽  
pp. 375-380 ◽  
Author(s):  
Fubing Liu ◽  
Zhenzhou Feng ◽  
Tianze Liu ◽  
Qinming Fei ◽  
Chun Jiang ◽  
...  

OBJECT This study sought to make a biomechanical comparison of 3 different posterior fixation techniques for 2-level lumbar spinal disorders. METHODS Eight fresh-frozen human cadaver lumbar spines (4 from L-1 to L-5, 4 from L-1 to S-1) were tested by applying pure moments of ± 8 Nm. Each specimen was first tested intact, and then the left facetectomies of L3–4 and L4–5 were performed to establish an unstable condition without removal of discs. Three instrumentation systems were then tested randomly: unilateral pedicle screw (UPS), UPS with contralateral translaminar facet screw (UPSFS), and bilateral pedicle screw (BPS). The range of motion (ROM) and the neutral zone (NZ) of L3–5 were measured. RESULTS All fixation types could reduce the ROM of L3–5 significantly in flexion, extension, and lateral bending, compared with the intact state. In axial torsion, only BPS reduced the ROM significantly, compared with the intact state. The UPSFS technique provided intermediate stability, which was superior to the UPS in flexion-extension and lateral bending, and inferior to the BPS in lateral bending. Compared with the intact state, the NZs decreased significantly for UPS, UPSFS, and BPS in flexion-extension, while not significantly in lateral bending and axial torsion. CONCLUSIONS In this study, among the 3 fixation techniques, BPS offered the highest stability, UPSFS provided intermediate stability, and UPS was the least stable for 2-level lumbar spinal disorders. UPSFS appeared to be able to offer a less invasive choice than BPS in well-selected patients with 2-level lumbar spinal disorders.


2017 ◽  
Vol 7 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Nitin Bhatia ◽  
Asheen Rama ◽  
Brandon Sievers ◽  
Ryan Quigley ◽  
Michelle H. McGarry ◽  
...  

Study Design: Biomechanical, cadaveric study. Objectives: To compare the relative stiffness of unilateral C1 lateral mass-C2 intralaminar fixation to intact specimens and bilateral C1 lateral mass-C2 intralaminar constructs. Methods: The biomechanical integrity of a unilateral C1 lateral mass-C2 intralaminar screw construct was compared to intact specimens and bilateral C1 lateral mass-C2 intralaminar screw constructs. Five human cadaveric specimens were used. Range of motion and stiffness were tested to determine the stiffness of the constructs. Results: Unilateral fixation significantly decreased flexion/extension range of motion compared to intact ( P < .001) but did not significantly affect axial rotation ( P = .3) or bending range of motion ( P = .3). There was a significant decrease in stiffness in extension for both unilateral and bilateral fixation techniques compared to intact ( P = .04 and P = .03, respectively). There was also a significant decrease in stiffness for ipsilateral rotation for the unilateral construct compared to intact ( P = .007) whereas the bilateral construct significantly increased ipsilateral rotation stiffness compared to both intact and unilateral fixation ( P < .001). Conclusion: Bilateral constructs did show improved biomechanical properties compared to the unilateral constructs. However, unilateral C1-C2 fixation using a C1 lateral mass and C2 intralaminar screw-rod construct decreased range of motion and improved stiffness compared to the intact state with the exception of extension and ipsilateral rotation. Hence, a unilateral construct may be acceptable in clinical situations in which bilateral fixation is not possible, but an external orthosis may be necessary to achieve a fusion.


2008 ◽  
Vol 63 (suppl_4) ◽  
pp. ONS303-ONS308 ◽  
Author(s):  
Şeref Doğan ◽  
Seungwon Baek ◽  
Volker K.H. Sonntag ◽  
Neil R. Crawford

Abstract Objective: To evaluate the differences in spinal stability and stabilizing potential of instrumentation after cervical corpectomy and spondylectomy. Methods: Seven human cadaveric specimens were tested: 1) intact; 2) after grafted C5 corpectomy and anterior C4–C6 plate; 3) after adding posterior C4–C6 screws/rods; 4) after extending posteriorly to C3–C7; 5) after grafted C5 spondylectomy, anterior C4–C6 plate, and posterior C4–C6 screws/rods; and 6) after extending posteriorly to C3–C7. Pure moments induced flexion, extension, lateral bending, and axial rotation; angular motion was recorded optically. Results: After corpectomy, anterior plating alone reduced the angular range of motion to a mean of 30% of normal, whereas added posterior short- or long-segment hardware reduced range of motion significantly more (P &lt; 0.003), to less than 5% of normal. Constructs with posterior rods spanning C3–C7 were stiffer than constructs with posterior rods spanning C4–C6 during flexion, extension, and lateral bending (P &lt; 0.05), but not during axial rotation (P &gt; 0.07). Combined anterior and C4–C6 posterior fixation exhibited greater stiffness after corpectomy than after spondylectomy during lateral bending (P = 0.019) and axial rotation (P = 0.001). Combined anterior and C3–C7 posterior fixation exhibited greater stiffness after corpectomy than after spondylectomy during extension (P = 0.030) and axial rotation (P = 0.0001). Conclusion: Circumferential fixation provides more stability than anterior instrumentation alone after cervical corpectomy. After corpectomy or spondylectomy, long circumferential instrumentation provides better stability than short circumferential fixation except during axial rotation. Circumferential fixation more effectively prevents axial rotation after corpectomy than after spondylectomy.


2020 ◽  
Vol 43 (12) ◽  
pp. 803-810 ◽  
Author(s):  
Masud Rana ◽  
Sandipan Roy ◽  
Palash Biswas ◽  
Shishir Kumar Biswas ◽  
Jayanta Kumar Biswas

The aim of this study is to design a novel expanding flexible rod device, for pedicle screw fixation to provide dynamic stability, based on strength and flexibility. Three-dimensional finite-element models of lumbar spine (L1-S) with flexible rod device on L3-L4-L5 levels are developed. The implant material is taken to be Ti-6Al-4V. The models are simulated under different boundary conditions, and the results are compared with intact model. In natural model, total range of motion under 10 Nm moment were found 66.7°, 24.3° and 13.59°, respectively during flexion–extension, lateral bending and axial rotation. The von Mises stress at intact bone was 4 ± 2 MPa and at bone, adjacent to the screw in the implanted bone, was 6 ± 3 MPa. The von Mises stress of disc of intact bone varied from 0.36 to 2.13 MPa while that of the disc between the fixed vertebra of the fixation model reduced by approximately 10% for flexion and 25% for extension compared to intact model. The von Mises stresses of pedicle screw were 120, 135, 110 and 90 MPa during flexion, extension, lateral bending, and axial rotation, respectively. All the stress values were within the safe limit of the material. Using the flexible rod device, flexibility was significantly increased in flexion/extension but not in axial rotation and lateral bending. The results suggest that dynamic stabilization system with respect to fusion is more effective for homogenizing the range of motion of the spine.


2013 ◽  
Vol 18 (6) ◽  
pp. 575-581 ◽  
Author(s):  
Prasath Mageswaran ◽  
Robert F. McLain ◽  
Robb Colbrunn ◽  
Tara Bonner ◽  
Elijah Hothem ◽  
...  

Object This study compared the fixing strength and stability achieved by a unilateral plate and screw configuration against a standard cervical fixation plate using a single-level corpectomy and allograft strut graft model. Methods Multidirectional in vitro flexibility tests were performed using a robotic spine testing system. Human cadaveric spines were assessed for spinal stability after vertebral corpectomy and anterior instrumentation. Specimens were mounted cranially and caudally on custom jigs that were then attached to load cells on the robotic system's end effector and base pedestal. C2–T1 spine specimens (n = 6) were tested intact; then after C-5 corpectomy (the vertebral body was excised), allograft placement and anterior plate fixation were performed. The surgeons performed a uniform corpectomy and reconstruction of each specimen in a protocol fashion. Two plates were compared: a unilateral 4-hole cervical plate designed to obtain rigid fixation using 4 convergent fixation screws all placed unilateral to the vertebral midline, and a standard cervical plate with bilateral plate screw configuration. The plate testing sequence was selected at random to limit bias. Fixation screws were matched for length and diameter. Pure moments were applied under load control (maximum 1.8 Nm) in flexion, extension, left/right lateral bending, and left/right axial rotation. Vertebral motion was measured using an optoelectronic system. The mean relative range of motion between C-4 and C-6 was compared among groups using repeated-measures ANOVA (significance level of 0.05). Results In comparing the intact construct and 2 different plates in all planes of motion, only motion in extension (intact vs unilateral plate, p = 0.003; intact vs standard plate, p = 0.001) and left axial rotation (intact vs unilateral plate, p = 0.019) were significantly affected. In terms of immediate cervical stability after 1-level corpectomy and placement of an allograft reconstruction, the unilateral plate showed comparable stiffness to the standard plate in all 3 motion planes (flexion [p = 0.993], extension [p = 0.732], left lateral bending [p = 0.683], right lateral bending [p = 0.546], left axial rotation [p = 0.082], and right axial rotation [p = 0.489]). The unilateral plate showed a trend toward improved stiffness in axial rotation. In no direction did the unilateral configuration prove significantly less stiff than the traditional configuration. Conclusions The unilateral plate design proposed here requires minimal dissection and retraction beyond the midline of tissues susceptible to scar, postoperative pain, and swelling. The authors' study suggests that a unilateral plate can be configured to provide comparable fixation strength and torsional stiffness compared with traditional, widely accepted plate designs.


2020 ◽  
Vol 10 (20) ◽  
pp. 7291
Author(s):  
Soo-Bin Lee ◽  
Hwan-Mo Lee ◽  
Tae-Hyun Park ◽  
Sung Lee ◽  
Young-Woo Kwon ◽  
...  

Background: There are a few biomechanical studies that describe posterior fixation methods with pedicle screws (PS) and lateral mass screws (LMS); the combination of both screw types and their effect on an allograft spacer in a surgically treated cervical segment is unknown. Methods: Finite element model (FEM) analyses were used to investigate the effects of a hybrid technique using posterior PS and LMS. Stress distribution and subsidence risk from a combination of screws under hybrid motion control conditions, including flexion, extension, axial rotation, and lateral bending, were investigated to evaluate the biomechanical characteristics of different six-screw combinations. Findings: The load sharing on the allograft spacer in flexion mode was highest in the LMS model (74.6%) and lowest in the PS model (35.1%). The likelihood of subsidence of allograft spacer on C6 was highest in the screws from the distal LMS (type 5) model during flexion and extension (4.902 MPa, 30.1% and 2.189 MPa, 13.4%). In lateral bending, the left unilateral LMS (type 4) model screws on C5 (3.726 MPa, 22.9%) and C6 (2.994 MPa, 18.4%) yielded the greatest subsidence risks, because the lateral bending forces were supported by the LMS. In counterclockwise axial rotation, the left unilateral LMS (type 4) model screws on C5 (3.092 MPa, 19.0%) and C6 (3.076 MPa, 18.9%) demonstrated the highest subsidence risks. Conclusion: The asymmetrical ipsilateral use of LMS and posterior PS in lateral bending and axial rotation demonstrated the lowest stability and greatest subsidence risk. We recommend bilateral symmetrical insertion of LMS or posterior PS and posterior PS on distal vertebrae for increased stability and reduced risk of allograft spacer subsidence.


2021 ◽  
pp. 1-9

OBJECTIVE Low fusion rates and cage subsidence are limitations of lumbar fixation with stand-alone interbody cages. Various approaches to interbody cage placement exist, yet the need for supplemental posterior fixation is not clear from clinical studies. Therefore, as prospective clinical studies are lacking, a comparison of segmental kinematics, cage properties, and load sharing on vertebral endplates is needed. This laboratory investigation evaluates the mechanical stability and biomechanical properties of various interbody fixation techniques by performing cadaveric and finite element (FE) modeling studies. METHODS An in vitro experiment using 7 fresh-frozen human cadavers was designed to test intact spines with 1) stand-alone lateral interbody cage constructs (lateral interbody fusion, LIF) and 2) LIF supplemented with posterior pedicle screw-rod fixation (360° constructs). FE and kinematic data were used to validate a ligamentous FE model of the lumbopelvic spine. The validated model was then used to evaluate the stability of stand-alone LIF, transforaminal lumbar interbody fusion (TLIF), and anterior lumbar interbody fusion (ALIF) cages with and without supplemental posterior fixation at the L4–5 level. The FE models of intact and instrumented cases were subjected to a 400-N compressive preload followed by an 8-Nm bending moment to simulate physiological flexion, extension, bending, and axial rotation. Segmental kinematics and load sharing at the inferior endplate were compared. RESULTS The FE kinematic predictions were consistent with cadaveric data. The range of motion (ROM) in LIF was significantly lower than intact spines for both stand-alone and 360° constructs. The calculated reduction in motion with respect to intact spines for stand-alone constructs ranged from 43% to 66% for TLIF, 67%–82% for LIF, and 69%–86% for ALIF in flexion, extension, lateral bending, and axial rotation. In flexion and extension, the maximum reduction in motion was 70% for ALIF versus 81% in LIF for stand-alone cases. When supplemented with posterior fixation, the corresponding reduction in ROM was 76%–87% for TLIF, 86%–91% for LIF, and 90%–92% for ALIF. The addition of posterior instrumentation resulted in a significant reduction in peak stress at the superior endplate of the inferior segment in all scenarios. CONCLUSIONS Stand-alone ALIF and LIF cages are most effective in providing stability in lateral bending and axial rotation and less so in flexion and extension. Supplemental posterior instrumentation improves stability for all interbody techniques. Comparative clinical data are needed to further define the indications for stand-alone cages in lumbar fusion surgery.


Sign in / Sign up

Export Citation Format

Share Document