rotation stiffness
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 2)

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5272-5286
Author(s):  
Huifeng Yang ◽  
Chaochao Wang ◽  
Junbin Hu ◽  
Haotian Tao ◽  
Jiwei Liu ◽  
...  

To evaluate the static and seismic behaviour of glulam beam-to-column connections with screwed-in threaded rods, nine specimens grouped in three were tested under both monotonic and reversed cyclic loads. The failure modes, moment resistance, initial rotation stiffness, ductility, and energy dissipation capacity of the developed connections were investigated. The results indicated that the developed beam-to-column connections showed superior structural performance. Furthermore, with the introduction of a steel bracket, the hybrid screwed-in threaded rod connection features larger stiffness, higher load-carrying capacity, remarkable ductility, and better energy dissipation capacity. The main failure modes included the yielding of steel brackets, as well as the yielding or rupture of the threaded rods, which indicated a ductile behaviour. The connection specimens with steel columns showed larger stiffness than those with glulam columns, which is reasonable for the bigger compressive deformation of glulam columns.


Author(s):  
Robin F. P. Gomes ◽  
Joep P. A. Nijssen ◽  
Ron A. J. van Ostayen

Abstract Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.


2020 ◽  
Vol 23 (11) ◽  
pp. 2318-2332
Author(s):  
Jianyang Xue ◽  
Guoqi Ren ◽  
Jiaheng Zhang ◽  
Dan Xu

This article presents an experimental and numerical study on seismic performance of semi-tenon joints reinforced by steel angle in traditional timber buildings. Five specimens with two different reinforced connections and one unreinforced connection subjected to low-cyclic reversed loading on the bending moment are examined. The unreinforced connection consists of left and right beams inserted into the column that has been used in setting up the mortise before assembly. The first type of reinforced connection is formed by bottom steel angles bolted to the column and jointed to the beam by means of bolts. The second type of reinforced connection is made up of top and bottom steel angles bolted to the column and connected to the beam relying on vertical and transverse bolts. Moreover, two reinforcement techniques aimed at enhancing the seismic performance of semi-tenon joints are investigated, including the change of steel angle limb length and the variation of steel angle limb thickness. The test setup, joint connection, reinforced conditions, and material properties are introduced through detailed account of the experimental results and observations. The key behavioral patterns are identified from the experiments and the main response characteristics such as hysteresis, stiffness, flexural capacity, energy dissipation, and the failure mechanism. This article demonstrates that the steel angle can enhance the flexural capacity of the semi-tenon joints significantly. Besides, the use of greater limb thickness steel angle is shown to be an effective detail for adequately increasing the flexural capacity and rotation stiffness of the joints. Finite element simulations of experiments are also conducted, together with a detailed description of the modeling methods, so as to gain further insight into the influence of various factors on the behavior of joints.


2020 ◽  
Vol 257 (6) ◽  
pp. 1900538 ◽  
Author(s):  
Shaowei Zhu ◽  
Xiaojun Tan ◽  
Shuai Chen ◽  
Bing Wang ◽  
Li Ma ◽  
...  

2020 ◽  
Vol 76 ◽  
pp. 305-310 ◽  
Author(s):  
Thais B. Cardoso ◽  
Juliana M. Ocarino ◽  
Clara C. Fajardo ◽  
Bruno D.C. Paes ◽  
Thales R. Souza ◽  
...  

Author(s):  
Marina Fernandes Alvarenga Oliveira ◽  
Pablo Augusto Krahl ◽  
Maria Cristina Vidigal de Lima

abstract: Due to low stiffness to lateral bending, long prestressed precast concrete beams are subject to lateral instability. For this reason, the safety analysis of these beams during the transitory stages of transport, lifting and assembly is fundamental. This work presents a nonlinear analytical model for the parametrical analysis of beams on bearing pads in their definitive location, without the effective connections being made. Such a solution determines a critical load of instability and considers the geometry of the cross-section, physical characteristics of the materials as well as geometric imperfections. A parametrical simulation is performed for the initial eccentricity, the initial rotation of the beam, concrete resistance, bearing pads dimensions, and the cross-section of the beam. The results show that the parameters of most considerable influence on beam stability are rotation stiffness of the bearing and the geometric characteristics of the cross-section of the beam, which can result in a reduction of about 50% of the critical rollover load. In addition, the cracking load may, in some cases, be close to the critical toppling load.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Shizhe Chen ◽  
Jianrong Pan ◽  
Zhan Wang ◽  
Chao Zhou

Spatial joints with end-plate connections show significant spatial coupling effects under spatial loading. Mechanical behaviour and failure modes of these spatial joints differ from those of planar joints. This study involved experiments and finite element analyses with respect to planar joints with end-plate connections under static load. The numerical results agreed well with the experimental data, and this verified the adequacy of the finite element analyses. Then, finite element models of the spatial interior joint, exterior joint, and corner joint were established to analyse the difference between the mechanical behaviour of spatial joints and planar joints. The component method was used to analyse components contributing to the initial stiffness of spatial joints. An initial rotation stiffness calculation model of spatial joints was proposed based on the deformation of joints. The findings indicated that results of the calculation models were in good agreement with those of the finite element analyses, and this proved that the calculation model proposed in this study could act as a reference method.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Miao Yang ◽  
Zhijiang Du ◽  
Wei Dong ◽  
Lining Sun

Flexure pivots are frequently applied in long stroke compliant mechanisms to transmit motion continuously. To improve the motion accuracy, a kind of variable thickness flexure pivot (VTFP) is proposed in this paper. A nonlinear beam element is proposed by utilizing the corotational approach to model the static response of the VTFP under end loads. Finite element analysis and experimental tests are carried out to verify the effectiveness of the modeling method. Based on the static deformation model, the motion range, the rotation stiffness, the center shift, and the variation of the center shift under axial force of the VTFP are investigated. The results show that the VTFP has better motion accuracy and better ability to resist axial force compared with the conventional flexure pivot.


2017 ◽  
Vol 7 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Nitin Bhatia ◽  
Asheen Rama ◽  
Brandon Sievers ◽  
Ryan Quigley ◽  
Michelle H. McGarry ◽  
...  

Study Design: Biomechanical, cadaveric study. Objectives: To compare the relative stiffness of unilateral C1 lateral mass-C2 intralaminar fixation to intact specimens and bilateral C1 lateral mass-C2 intralaminar constructs. Methods: The biomechanical integrity of a unilateral C1 lateral mass-C2 intralaminar screw construct was compared to intact specimens and bilateral C1 lateral mass-C2 intralaminar screw constructs. Five human cadaveric specimens were used. Range of motion and stiffness were tested to determine the stiffness of the constructs. Results: Unilateral fixation significantly decreased flexion/extension range of motion compared to intact ( P < .001) but did not significantly affect axial rotation ( P = .3) or bending range of motion ( P = .3). There was a significant decrease in stiffness in extension for both unilateral and bilateral fixation techniques compared to intact ( P = .04 and P = .03, respectively). There was also a significant decrease in stiffness for ipsilateral rotation for the unilateral construct compared to intact ( P = .007) whereas the bilateral construct significantly increased ipsilateral rotation stiffness compared to both intact and unilateral fixation ( P < .001). Conclusion: Bilateral constructs did show improved biomechanical properties compared to the unilateral constructs. However, unilateral C1-C2 fixation using a C1 lateral mass and C2 intralaminar screw-rod construct decreased range of motion and improved stiffness compared to the intact state with the exception of extension and ipsilateral rotation. Hence, a unilateral construct may be acceptable in clinical situations in which bilateral fixation is not possible, but an external orthosis may be necessary to achieve a fusion.


Sign in / Sign up

Export Citation Format

Share Document